Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The soil microbial fuel cell (SMFC) has been widely used for soil remediation for its low cost and being eco-friendly. But low degradation efficiency and high mass transfer resistance limit its performance. This study constructed a solar cell-soil microbial fuel cell (SC-SMFC) with different voltages, which use clean energy to improve system performance. At different voltages, 2.0-V system showed the best performance and the maximum output power increased by 330% compared with SMFC. Moreover, 2.0-V SC-SMFC showed the fastest phenol degradation rate of 14 μg·mL·d at the concentration of 80 μg/mL, which was twice of SMFC. Further increasing the concentration to 320 μg/mL, the system showed extremely high concentration limit and degraded 90% within 19 days. Under this condition, SC-SMFC still showed excellent cycle stability, with the third-round degrading 90% phenol in 13 days. Finally, electrochemical impedance spectroscopy (EIS) mechanism study showed that solar cells can accelerate microbial metabolic process and reduce the internal resistance, in which the 2.0-V system was only 87% of SMFC. In conclusion, SC-SMFC provides a green, low-cost, and convenient method for in situ soil remediation in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24356-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!