A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In situ degradation of organic pollutants by novel solar cell equipped soil microbial fuel cell. | LitMetric

In situ degradation of organic pollutants by novel solar cell equipped soil microbial fuel cell.

Environ Sci Pollut Res Int

The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Published: March 2023

The soil microbial fuel cell (SMFC) has been widely used for soil remediation for its low cost and being eco-friendly. But low degradation efficiency and high mass transfer resistance limit its performance. This study constructed a solar cell-soil microbial fuel cell (SC-SMFC) with different voltages, which use clean energy to improve system performance. At different voltages, 2.0-V system showed the best performance and the maximum output power increased by 330% compared with SMFC. Moreover, 2.0-V SC-SMFC showed the fastest phenol degradation rate of 14 μg·mL·d at the concentration of 80 μg/mL, which was twice of SMFC. Further increasing the concentration to 320 μg/mL, the system showed extremely high concentration limit and degraded 90% within 19 days. Under this condition, SC-SMFC still showed excellent cycle stability, with the third-round degrading 90% phenol in 13 days. Finally, electrochemical impedance spectroscopy (EIS) mechanism study showed that solar cells can accelerate microbial metabolic process and reduce the internal resistance, in which the 2.0-V system was only 87% of SMFC. In conclusion, SC-SMFC provides a green, low-cost, and convenient method for in situ soil remediation in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24356-zDOI Listing

Publication Analysis

Top Keywords

microbial fuel
12
fuel cell
12
soil microbial
8
soil remediation
8
20-v system
8
situ degradation
4
degradation organic
4
organic pollutants
4
pollutants novel
4
novel solar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!