Background: Kisspeptin is a neuropeptide with a primary role on the onset of puberty and has beneficial effects on ischemia/ reperfusion (I/R) injury. In this study, we aimed to investigate the effect of kisspeptin administration on striatal I/R injury in mice.

Methods: Forty adult C57/BL6 mice were randomly divided into four groups: Sham, Kisspeptin, I/R, and I/R + Kisspeptin groups. The groups were administered with either physiological saline (Sham and I/R groups) or kisspeptin (Kisspeptin and I/R + Kisspeptin groups) intraperitoneally 40 min before the operation. A microdialysis probe was placed in the right striatum according to stereotaxic coordinates. During the experimental period, artificial cerebrospinal fluid was passed through the micropump. Then, transient cerebral ischemia was established by compressing both common carotid arteries with an aneurysm clip for 15 min and animals were reperfused for 2 h. Throughout the process of microdialysis (before, during and after I/R period), samples were collected to measure dopamine (DA), noradrenaline (NA), and 3,4-dihydroxyphenylglycine (DHPG) at intervals of 20 min continuously. At the end of the reperfusion period, the animals were decapitated, striatum was dissected, half of the animals were used for oxidative stress analyses (reduced glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD), malondialdehyde (MDA), and the other half were used for histopathology analyses.

Results: Number of glial cells was significantly increased in kisspeptin-administered groups. DA levels in ischemic animals were decreased by kisspeptin administration (p < 0.0001). NA levels were reduced in animals administered with kisspeptin without I/R injury (p < 0.05). DHPG levels reduced during the reperfusion period in ischemic animals (p < 0.05). Kisspeptin did not exhibit a significant antioxidant activity in the ischemic animals, while GST and SOD levels were reduced in the I/R + kisspeptin group compared to the kisspeptin group (p < 0.05).

Discussion: Our results suggest that kisspeptin may be regulating the neurotransmitter release and metabolism, as well as inflammatory response in brain upon I/R injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395688PMC
http://dx.doi.org/10.55730/1300-0144.5493DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
kisspeptin
13
kisspeptin i/r
12
i/r kisspeptin
12
ischemic animals
12
levels reduced
12
i/r
10
kisspeptin administration
8
kisspeptin groups
8
reperfusion period
8

Similar Publications

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role.

View Article and Find Full Text PDF

Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice.

Brain Res

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:

Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation.

View Article and Find Full Text PDF

Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.

View Article and Find Full Text PDF

Purpose: Due to its increased volume, polycystic ovarian tissue is more prone to torsion than normal ovarian tissue. In treating ovarian torsion, detorsion is applied to ensure oxygenation of hypoxic tissues. However, the resulting oxygen radicals cause tissue damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!