In this paper, the use of Artificial Neural Networks (ANNs) in the form of Convolutional Neural Networks (AlexNET) for the fast and energy-efficient fitting of the Dynamic Memdiode Model (DMM) to the conduction characteristics of bipolar-type resistive switching (RS) devices is investigated. Despite an initial computationally intensive training phase the ANNs allow obtaining a mapping between the experimental Current-Voltage () curve and the corresponding DMM parameters without incurring a costly iterative process as typically considered in error minimization-based optimization algorithms. In order to demonstrate the fitting capabilities of the proposed approach, a complete set of s obtained from YO-based RRAM devices, fabricated with different oxidation conditions and measured with different current compliances, is considered. In this way, in addition to the intrinsic RS variability, extrinsic variation is achieved by means of external factors (oxygen content and damage control during the set process). We show that the reported method provides a significant reduction of the fitting time (one order of magnitude), especially in the case of large data sets. This issue is crucial when the extraction of the model parameters and their statistical characterization are required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698277 | PMC |
http://dx.doi.org/10.3390/mi13112002 | DOI Listing |
Biomed Phys Eng Express
January 2025
National School of Electronics and Telecommunication of Sfax, Sfax rte mahdia, sfax, sfax, 3012, TUNISIA.
Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.
View Article and Find Full Text PDFJ Food Sci
January 2025
Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.
Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Electronics and Engineering, Heilongjiang University, Harbin, China.
Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self-designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples.
View Article and Find Full Text PDFMater Horiz
January 2025
Center for Nanophotonics, AMOLF, 1098 XG, Amsterdam, The Netherlands.
Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!