A Tuneable Pressure-Based Energy Harvester for Powering the Environmental Internet of Things.

Micromachines (Basel)

Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.

Published: November 2022

As the internet of things expands to more remote locations, solutions are required for long-term remote powering of environmental sensing devices. In this publication, a device is presented which utilises the slow-moving diurnal temperature change present in many natural environments to produce electrical energy. This device utilises a novel actuator which harnesses temperature-dependent phase change to provide a variable force output, and this is combined with energy storage and release apparatus to convert the output force into electrical energy. Appropriate modelling is utilised to identify parameters for system tuning, and a final proof-of-concept solution is constructed and demonstrated to generate up to 10 mJ per 24 h period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698778PMC
http://dx.doi.org/10.3390/mi13111973DOI Listing

Publication Analysis

Top Keywords

powering environmental
8
internet things
8
electrical energy
8
tuneable pressure-based
4
energy
4
pressure-based energy
4
energy harvester
4
harvester powering
4
environmental internet
4
things internet
4

Similar Publications

Objective: Assess the level of radiation-related knowledge (RRK) and nuclear energy-related knowledge (NERK) among residents near the Sanmen Nuclear Power Plant, the first project adopted the Advanced Passive Pressurized Water Reactor (AP1000) technology.

Methods: In this study, respondents were selected using stratified multi-stage random sampling for residents aged 18 years and above living within 30 kilometers of the Sanmen Nuclear Power Station. Respondents were surveyed face-to-face by investigators who received standardized training.

View Article and Find Full Text PDF

This paper analyses the right to repair (R2R) movement through the lens of radical democracy, elucidating the opportunities and limitations for advancing a democratic repair ethics against a backdrop of power imbalances and vested interests. We commence our analysis by exploring broader political-economic trends, demonstrating that Original Equipment Manufacturers (OEMs) are increasingly shifting towards asset-based repair strategies. In this landscape, hegemony is preserved not solely through deterrence tactics like planned obsolescence but also by conceding repairability while monopolizing repair and maintenance services.

View Article and Find Full Text PDF

Harnessing the power of cinnamon oil: A review of its potential as natural biopesticide and its implications for food security.

Heliyon

January 2025

Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center-BRIN, Cibinong, 16911, Jawa Barat, Indonesia.

The escalating concerns about the environmental and health impacts of synthetic pesticides have intensified the search for sustainable and effective alternatives. Cinnamon oil, derived from the bark of Cinnamomum species, has emerged as a promising candidate in this arena due to its potent biopesticidal properties. This review explores the multifaceted role of cinnamon oil in agricultural pest management, emphasizing its potential to contribute significantly to food security.

View Article and Find Full Text PDF

Millimeter-scale radioluminescent power for electronic sensors.

iScience

January 2025

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.

View Article and Find Full Text PDF

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!