In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus . Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694901 | PMC |
http://dx.doi.org/10.3390/metabo12111100 | DOI Listing |
Curr Res Microb Sci
November 2024
Facultad de Agronomía y Veterinaria. Universidad Autónoma de San Luis Potosí. Soledad de Graciano Sánchez, SLP, CP, 78321. México.
Currently, the use of bio-inputs is increasing due to the need to reduce the use of agrochemicals. However, one of the limitations is to preserve the viability of the living microorganisms, so it is important to find an alternative that allows us to obtain different metabolites to produce it. We evaluated three different interactions (contact, diffusible and volatile compounds) in (At) seedlings with the strain M10 and its filtered secondary metabolites (M10F).
View Article and Find Full Text PDFPlant Mol Biol
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.
View Article and Find Full Text PDFNeotrop Entomol
December 2024
Dept of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl Univ, Van, Türkiye.
This study discusses plant-mediated effects of beneficial soil-borne microorganisms on population growth parameters of Spodoptera exigua (Lepidoptera: Noctuidae), a major cotton pest. In particular, we investigated the impact of these microorganisms on oxidative stress, chlorophyll content, and sugar and protein levels in cotton plants, and how these changes in the plant affect the survival, development, reproduction, and ultimately population growth of the pest. A longer preadult period, lower preadult survival rate, and lower reproduction were obtained for the pest cohort feeding on treated plants, which resulted in lower population parameters, i.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Plant Microorganism Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile. Electronic address:
Environ Pollut
December 2024
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Microbial secondary metabolites are crucial in plant-microorganism interactions, regulating plant growth and stress responses. In this study, we found that cyclo(-Phe-Pro), a proline-based cyclic dipeptide secreted by many microorganisms, alleviated aluminum toxicity in wheat roots by increasing root growth, decreasing callose deposition, and decreasing Al accumulation. Cyclo(-Phe-Pro) also significantly reduced Al-induced reactive oxygen species (ROS) with HO, O, and •OH levels decreasing by 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!