Background and Objectives: Carbonic anhydrase (CA) enzymes are a family of metalloenzymes that contain a zinc ion in their active sites. CA enzymes have been implied in important situations such as CO2 transport, pH regulation, and oncogenesis. CA-IX is a transmembrane glycoprotein and stimulates the expression of hypoxia-inducible factor-1 (HIF-1) CA-IX. This study aimed to determine serum CA-IX levels in OSA patients in whom intermittent hypoxia is important and to investigate the relationship between serum CA-IX levels and disease severity. Materials and Methods: The study included 88 people who applied to Malatya Turgut Özal University Training and Research Hospital Sleep Disorders Center without a history of respiratory disease, malignancy, and smoking. Patients were divided into three groups: control (AHI < 5, n = 31), mild−moderate OSA (AHI = 5−30, n = 27) and severe OSA (AHI > 30, n = 30). The analysis of the data included in the research was carried out with the SPSS (IBM Statistics 25, NY, USA). The Shapiro−Wilk Test was used to check whether the data included in the study had a normal distribution. Comparisons were made with ANOVA in multivariate groups and the t-test in bivariate groups. ANCOVA was applied to determine the effect of the CA-IX parameter for OSA by controlling the effect of independent variables. The differentiation in CA-IX and OSA groups was analyzed regardless of BMI, age, gender, and laboratory variables. ROC analysis was applied to determine the parameter cut-off point. Sensitivity, specificity, and cut-off were calculated, and the area under the curve (AUC) value was calculated. Results: Serum CA-IX levels were 126.3 ± 24.5 pg/mL in the control group, 184.6 ± 59.1 pg/mL in the mild−moderate OSA group, and 332.0 ± 39.7 pg/mL in the severe OSA group. Serum CA-IX levels were found to be higher in the severe OSA group compared to the mild−moderate OSA group and control group and higher in the mild−moderate OSA group compared to the control group (p < 0.001, p < 0.001, p < 0.001, respectively). In addition, a negative correlation between CA-IX and minimum SaO2 and mean SaO2 (r = −0.371, p = 0.004; r = −0.319, p = 0.017, respectively). A positive correlation between CA-IX and desaturation index (CT90) was found (r = 0.369, p = 0.005). A positive correlation was found between CA-IX and CRP (r = 0.340, p = 0.010). When evaluated by ROC curve analysis, the area under the curve (AUC) value was determined as 0.940 (95% CI 0.322−0.557; p < 0.001). When the cut-off value for CA-IX was taken as 254.5 pg/mL, it was found to have 96.7% sensitivity and 94.8% specificity in demonstrating severe OSA. Conclusions: Our study found that serum CA-IX value was higher in OSA patients than in control patients, and this elevation was associated with hypoxemia and inflammation. CA-IX value can be a fast, precise, and useful biomarker to predict OSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695925PMC
http://dx.doi.org/10.3390/medicina58111643DOI Listing

Publication Analysis

Top Keywords

serum ca-ix
20
osa group
20
ca-ix levels
16
mild−moderate osa
16
severe osa
16
ca-ix
14
osa
13
control group
12
correlation ca-ix
12
carbonic anhydrase
8

Similar Publications

Introduction: Hypoxia can drive tumor progression, suppress anti-tumor immunity, and reduce the effectiveness of radiotherapy and chemotherapy. This study aimed to assess the impact of remote ischemic conditioning (RIC) on tumor oxygenation (sO2) and the anti-tumor immune response.

Material And Methods: Fourteen B16-Ova tumor-bearing C57BL/6N mice received six 5-minute RIC cycles, while another fourteen underwent anesthesia only.

View Article and Find Full Text PDF

Background and Objectives: Carbonic anhydrase (CA) enzymes are a family of metalloenzymes that contain a zinc ion in their active sites. CA enzymes have been implied in important situations such as CO2 transport, pH regulation, and oncogenesis. CA-IX is a transmembrane glycoprotein and stimulates the expression of hypoxia-inducible factor-1 (HIF-1) CA-IX.

View Article and Find Full Text PDF

Herein, we designed six kinetically labile ruthenium(ii) complexes containing saccharin (sac) and 4'-substituted-2,2':6',2''-terpyridines (R-tpy), viz. trans-[Ru(sac)2(H2O)3(dmso-S)] (1) and [RuII(R-tpy)(sac)2(X)] [X = solvent molecule] (2-6). We intentionally kept the labile hydrolysable Ru-X bonds that were potentially activated via solvent-exchange reactions.

View Article and Find Full Text PDF

Modulation of the Pharmacokinetics of a Radioligand Targeting Carbonic Anhydrase-IX with Albumin-Binding Moieties.

Mol Pharm

March 2021

Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

The expression of carbonic anhydrase-IX (CA-IX) in tumors can lead to a poor prognosis; thus, CA-IX has attracted much attention as a target molecule for cancer diagnosis and treatment. An In-labeled imidazothiadiazole sulfonamide (IS) derivative, [In]In-DO3A-IS1, exhibited marked tumor accumulation but also marked renal accumulation, raising concerns about it producing a low signal/background ratio and a high radiation burden on the kidneys. In this study, four In-labeled IS derivatives, IS-[In]In-DO2A-ALB1-4, which contained four different kinds of albumin binder (ALB) moieties, were designed and synthesized with the aim of improving the pharmacokinetics of [In]In-DO3A-IS1.

View Article and Find Full Text PDF

In this study, we developed a saccharin (SAC)-based radiopharmaceutical ( Ga-NOTA-SAC) and evaluated the possibility of its application as a PET tracer in the diagnosis of carbonic anhydrase IX (CA IX)-overexpressed tumors. We did a water-soluble tetrazolium assay and flow cytometry analysis to identify the cell viability decrease by SAC. The radiochemical purity and stability of Ga- NOTA-SAC in human and mouse serum was greater than 98%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!