Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reverse osmosis performance in removing nickel ions from artificial wastewater was experimentally and mathematically assessed. The impact of temperature, pressure, feed concentration, and feed flow rate on the permeate flux and Ni (II) rejection % were studied. Experiments were conducted using a SEPA CF042 Membrane Test Skid-TFC BW30XFR with applied pressures of 10, 20, 30, and 40 bar and feed concentrations of 25, 50, 100, and 150 ppm with varying operating temperatures of 25, 35, and 45 °C, while the feed flow rate was changed between 2, 3.2, and 4.4 L/min. The permeate flux and the Ni (II) removal % were directly proportional to the feed temperature and operating pressure, but inversely proportional to the feed concentration, where the permeate flux increased by 49% when the temperature was raised from 25 to 45 °C, while the Ni (II) removal % slightly increased by 4%. In addition, the permeate flux increased by 188% and the Ni (II) removal % increased to 95.19% when the pressure was raised from 10 to 40 bar. The feed flow rate, on the other hand, had a negligible influence on the permeate flux and Ni (II) removal %. The temperature correction factor (TCF) was determined to be directly proportional to the feed temperature, but inversely proportional to the operating pressure; nevertheless, the TCF was unaffected either by the feed flow rate or the feed concentration. Based on the experimental data, mathematical models were generated for both the permeate flux and nickel removal %. The results showed that both models matched the experimental data well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695154 | PMC |
http://dx.doi.org/10.3390/membranes12111163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!