A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Combined Effects of the Membrane and Flow Channel Development on the Performance and Energy Footprint of Oil/Water Emulsion Filtration. | LitMetric

Membrane filtration is a promising technology for oil/water emulsion filtration due to its excellent removal efficiency of microdroplets of oil in water. However, its performance is highly limited due to the fouling-prone nature of oil droplets on hydrophobic membranes. Membrane filtration typically suffers from a low flux and high pumping energy. This study reports a combined approach to tackling the membrane fouling challenge in oil/water emulsion filtration via a membrane and a flow channel development. Two polysulfone (PSF)-based lab-made membranes, namely PSF- PSF-Nonsolvent induced phase separation (NIPS) and PSF-Vapor-induced phase separation (VIPS), were selected, and the flow channel was modified into a wavy path. They were assessed for the filtration of a synthetic oil/water emulsion. The results showed that the combined membrane and flow channel developments enhanced the clean water permeability with a combined increment of 105%, of which 34% was attributed to the increased effective filtration area due to the wavy flow channel. When evaluated for the filtration of an oil/water emulsion, a 355% permeability increment was achieved from 43 for the PSF-NIPS in the straight flow channel to 198 L m h bar for the PSF-VIPS in the wavy flow channel. This remarkable performance increment was achieved thanks to the antifouling attribute of the developed membrane and enhanced local mixing by the wavy flow channel to limit the membrane fouling. The increase in the filtration performance was translated into up to 78.4% (0.00133 vs. 0.00615 kWh m) lower in pumping energy. The overall findings demonstrate a significant improvement by adopting multi-pronged approaches in tackling the challenge of membrane fouling for oil/water emulsion filtration, suggesting the potential of this approach to be applied for other feeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694986PMC
http://dx.doi.org/10.3390/membranes12111153DOI Listing

Publication Analysis

Top Keywords

flow channel
32
oil/water emulsion
24
emulsion filtration
16
membrane flow
12
membrane fouling
12
wavy flow
12
filtration
10
membrane
9
flow
8
channel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!