AI Article Synopsis

  • The Kv1.3 channel is targeted for treating various diseases, and while scorpion venom has blockers, they are hard to obtain in large quantities.
  • The Pichia pastoris expression system offers a cost-effective way to produce these blockers, allowing for sufficient yields of Vm24, AnTx, and Ts6.
  • The study found that tagged and untagged versions of Vm24 and AnTx perform similarly to native toxins in blocking Kv1.3, though untagged Ts6 shows significantly reduced effectiveness, highlighting this method's potential for developing new treatments.

Article Abstract

The Kv1.3 channel has become a therapeutic target for the treatment of various diseases. Several Kv1.3 channel blockers have been characterized from scorpion venom; however, extensive studies require amounts of toxin that cannot be readily obtained directly from venoms. The Pichia pastoris expression system provides a cost-effective approach to overcoming the limitations of chemical synthesis and E. coli recombinant expression. In this work, we developed an efficient system for the production of three potent Kv1.3 channel blockers from different scorpion venoms: Vm24, AnTx, and Ts6. Using the Pichia system, these toxins could be obtained in sufficient quantities (Vm24 1.6 mg/L, AnTx 46 mg/L, and Ts6 7.5 mg/L) to characterize their biological activity. A comparison was made between the activity of tagged and untagged recombinant peptides. Tagged Vm24 and untagged AnTx are nearly equivalent to native toxins in blocking Kv1.3 (Kd = 4.4 pM and Kd = 0.72 nM, respectively), whereas untagged Ts6 exhibits a 53-fold increase in Kd (Kd = 29.1 nM) as compared to the native peptide. The approach described here provides a method that can be optimized for toxin production to develop more selective and effective Kv1.3 blockers with therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697831PMC
http://dx.doi.org/10.3390/jof8111215DOI Listing

Publication Analysis

Top Keywords

kv13 channel
16
channel blockers
12
recombinant expression
8
expression system
8
three potent
8
potent kv13
8
kv13
6
system
4
system three
4
channel
4

Similar Publications

A sex-dependent role of Kv1.3 channels from macrophages in metabolic syndrome.

Front Physiol

November 2024

Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.

Article Synopsis
  • Coronary artery disease (CAD) is a leading cause of death and disability worldwide, particularly affecting patients with type 2 diabetes (T2DM) who experience worse outcomes due to inflammation and endothelial dysfunction.* ! -
  • The study investigates the role of K1.3 channel blockers in reducing intimal hyperplasia and improving metabolic dysfunction in a T2DM mouse model, focusing on the macrophage K1.3 channels as potential therapeutic targets.* ! -
  • Results indicate that K1.3 channel expression is increased in macrophages from T2DM mice, especially in females, but these channels primarily influence cell migration rather than metabolic function or phagocytosis.* !
View Article and Find Full Text PDF

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

Novel insights into the modulation of the voltage-gated potassium channel K1.3 activation gating by membrane ceramides.

J Lipid Res

August 2024

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:

Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (K), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the K1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD.

View Article and Find Full Text PDF

K1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication.

Sci Signal

July 2024

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.

View Article and Find Full Text PDF

Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone.

Int J Mol Sci

May 2024

Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!