Multiple animal species have evolved resistance to the neurotoxin tetrodotoxin (TTX) through changes in voltage-gated sodium ion channels (VGSCs). Amino acid substitutions in TTX-resistant lineages appear to be positionally convergent with changes in homologous residues associated with reductions in TTX block. We used homology modeling coupled with docking simulations to test whether positionally convergent substitutions generate functional convergence at the level of TTX-channel interactions. We found little evidence that amino acids at convergent positions generated similar patterns among TTX-resistant animal lineages across several metrics, including number of polar contacts, polar contact position, and estimates of binding energy. Though binding energy values calculated for TTX docking were reduced for some TTX-resistant channels, not all TTX-resistant channels and not all of our analyses returned reduced binding energy values for TTX-resistant channels. Our results do not support a simple model of toxin resistance where a reduced number of bonds between TTX and the channel protein prevents blocking. Rather models that incorporate flexibility and movement of the protein overall may better describe how homologous substitutions in the channel cause changes in TTX block.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698786 | PMC |
http://dx.doi.org/10.3390/md20110723 | DOI Listing |
Commun Chem
December 2024
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
The PepT transporter mediates the transport of peptides across biological membranes. Despite advancements in structural biology, including cryogenic electron microscopy structures resolving PepT in different states, the molecular basis of peptide recognition and transport by PepT is not fully elucidated. In this study, we used molecular dynamics simulations, Markov State Models (MSMs), and Transition Path Theory (TPT) to investigate the transport mechanism of an alanine-alanine peptide (Ala-Ala) through the PepT transporter.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.
This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address:
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Colquhounia Root Tablet (CRT), one of the Tripterygium wilfordii Hook F. (TwHF)-based therapeutics, has exhibited various functions in DN.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2024
Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France. Electronic address:
Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes.
View Article and Find Full Text PDFAdv Mater
December 2024
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Highly efficient nonfullerene acceptors (NFAs) for organic solar cells (OSCs) with low energy loss (E) and favorable morphology are critical for breaking the efficiency bottleneck and achieving commercial applications of OSCs. In this work, quinoxaline-based NFAs are designed and synthesized using a synergistic isomerization and bromination approach. The π-expanded quinoxaline-fused core exhibits different bromination sites for isomeric NFAs, namely AQx-21 and AQx-22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!