A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Non-Invasive Method of Estimating Populations of on Scots Pine ( L.). | LitMetric

A Non-Invasive Method of Estimating Populations of on Scots Pine ( L.).

Insects

Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Str., 25-406 Kielce, Poland.

Published: November 2022

The fully non-invasive method presented here can be used to evaluate Tomicus piniperda L. population sizes in areas subject to strict protection. Data were collected in 2021−2022 in forests containing P. sylvestris, with different stand structures, in the Suchedniowsko-Oblęgorski Landscape Park, Poland. Entomological analyses were carried out on natural traps made from live uncolonised trees. Stepwise regression was used to describe the size of T. piniperda populations. From a set of features representing stem colonisation parameters, stem traits and habitat, the following had a significant effect (p < 0.05) on the total number of galleries of T. piniperda on stems: (1) the number of T. piniperda maternal tunnels in the sixth stem section covering 2.5% of the total length, (2) the length of the stem section with bark thickness greater than 7 mm, and (3) stand structure (homogeneous Scots pine stands). The model can explain 93% (Radj2=0.9333) of the variability in the total number of T. piniperda galleries on trap trees. The mean relative error of estimation is 20.1%. The proposed method is particularly valuable in a climate context. The data obtained enable the prediction of the direct effects of climate change on the population dynamics of T. piniperda in natural forests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695610PMC
http://dx.doi.org/10.3390/insects13111071DOI Listing

Publication Analysis

Top Keywords

non-invasive method
8
scots pine
8
total number
8
number piniperda
8
piniperda
6
method estimating
4
estimating populations
4
populations scots
4
pine fully
4
fully non-invasive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!