Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688744PMC
http://dx.doi.org/10.3390/bios12111004DOI Listing

Publication Analysis

Top Keywords

glucose biosensors
16
non-enzymatic glucose
16
electrochemical biosensors
8
carbon nanofiber
8
high sensitivity
8
biosensors
6
glucose
6
review non-enzymatic
4
non-enzymatic electrochemical
4
biosensors glucose
4

Similar Publications

Glucose sensing remains a crucial need as diabetes is a worldwide concern. This work reports the application of NbCT-selenium nanoparticle composite material for the nonenzymatic sensing of glucose. The surface morphology of the synthesized composite was analyzed using various microscopic techniques like scanning electron microscopy, transmission electron microscopy, and its structural properties were analyzed using diffraction and spectroscopic methods.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Enzymatic cascade reactions are widely utilized in food security, environmental monitoring, and disease diagnostics, whereas their practical application was hindered due to their limited catalytic efficiency and intrinsic fragility to environmental influences. Herein, a compartmentalized dual-enzyme cascade nanoreactor was constructed in metal-organic frameworks (ZIF-8) by a shell-by-shell growth method. ZIF-8 provided a good microenvironment to maintain the activity of enzymes and protected them against harsh conditions.

View Article and Find Full Text PDF

This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.

View Article and Find Full Text PDF

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!