Tissue engineering strategies that combine human pluripotent stem cell-derived myogenic progenitors (hPDMs) with advanced biomaterials provide promising tools for engineering 3D skeletal muscle grafts to model tissue development in vitro and promote muscle regeneration in vivo. We recently demonstrated (i) the potential for obtaining large numbers of hPDMs using a combination of two small molecules without the overexpression of transgenes and (ii) the application of electrospun fibrin microfiber bundles for functional skeletal muscle restoration following volumetric muscle loss. In this study, we aimed to demonstrate that the biophysical cues provided by the fibrin microfiber bundles induce hPDMs to form engineered human skeletal muscle grafts containing multinucleated myotubes that express desmin and myosin heavy chains and that these grafts could promote regeneration following skeletal muscle injuries. We tested a genetic PAX7 reporter line (PAX7::GFP) to sort for more homogenous populations of hPDMs. RNA sequencing and gene set enrichment analyses confirmed that PAX7::GFP-sorted hPDMs exhibited high expression of myogenic genes. We tested engineered human skeletal muscle grafts derived from PAX7::GFP-sorted hPDMs within in vivo skeletal muscle defects by assessing myogenesis, engraftment and immunogenicity using immunohistochemical staining. The PAX7::GFP-sorted groups had moderately high vascular infiltration and more implanted cell association with embryonic myosin heavy chain (eMHC) regions, suggesting they induced pro-regenerative microenvironments. These findings demonstrated the promise for the use of PAX7::GFP-sorted hPDMs on fibrin microfiber bundles and provided some insights for improving the cell-biomaterial system to stimulate more robust in vivo skeletal muscle regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687588PMC
http://dx.doi.org/10.3390/bioengineering9110693DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
32
muscle grafts
16
fibrin microfiber
16
microfiber bundles
16
pax7gfp-sorted hpdms
12
muscle
10
engineering skeletal
8
human pluripotent
8
pluripotent stem
8
stem cell-derived
8

Similar Publications

Physical activity, cathepsin B, and cognitive health.

Trends Mol Med

January 2025

Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.

View Article and Find Full Text PDF

Homozygous missense variant in causes early-onset neurodegeneration, leukoencephalopathy and autoinflammation.

J Med Genet

January 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.

View Article and Find Full Text PDF

Skeletal muscle disorders as risk factors for type 2 diabetes.

Mol Cell Endocrinol

January 2025

Department of Physiology and Biophysics, Rush University, Chicago, United States.

The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Objective: This study aimed to explore the predictive value of baseline CT body composition and its early changes on recurrence-free survival (RFS) following radical gastrectomy, while also assessing potential sex-related differences.

Methods: We conducted a retrospective analysis of gastric cancer (GC) patients with confirmed pathology from October 2019 to May 2023. All patients underwent preoperative and postoperative CT scans to assess visceral fat area (VFA), subcutaneous fat area (SFA), skeletal muscle area (SMA), and skeletal muscle density (SMD), along with calculating their respective rates of change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!