Robotic patients show great potential for helping to improve medical palpation training, as they can provide feedback that cannot be obtained in a real patient. They provide information about internal organ deformation that can significantly enhance palpation training by giving medical trainees visual insight based on the pressure they apply for palpation. This can be achieved by using computational models of abdomen mechanics. However, such models are computationally expensive, and thus unable to provide real-time predictions. In this work, we proposed an innovative surrogate model of abdomen mechanics by using machine learning (ML) and finite element (FE) modelling to virtually render internal tissue deformation in real time. We first developed a new high-fidelity FE model of the abdomen mechanics from computerized tomography (CT) images. We performed palpation simulations to produce a large database of stress distribution on the liver edge, an area of interest in most examinations. We then used artificial neural networks (ANNs) to develop the surrogate model and demonstrated its application in an experimental palpation platform. Our FE simulations took 1.5 h to predict stress distribution for each palpation while this only took a fraction of a second for the surrogate model. Our results show that our artificial neural network (ANN) surrogate has an accuracy of 92.6%. We also showed that the surrogate model is able to use the experimental input of palpation location and force to provide real-time projections onto the robotics platform. This enhanced robotics platform has the potential to be used as a training simulator for trainees to hone their palpation skills.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687124PMC
http://dx.doi.org/10.3390/bioengineering9110687DOI Listing

Publication Analysis

Top Keywords

surrogate model
20
model abdomen
12
abdomen mechanics
12
finite element
8
palpation
8
palpation training
8
provide real-time
8
stress distribution
8
artificial neural
8
robotics platform
8

Similar Publications

Physical activity alleviated associations of oxidation capacity of the atmosphere with platelet-based inflammatory indicators: findings from the Henan Rural Cohort Study.

Environ Sci Process Impacts

January 2025

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.

: several adverse effects of ozone (O) and nitrogen dioxide (NO) are assessed using combined oxidant capacity (O) and redox-weighted oxidant capacity (Owtx) as surrogates. However, the associations of oxidant capacity (O and Owtx) with platelet-based inflammatory indicators and the potential modifying role of physical activity (PA) remain unclear. : 31 318 participants were selected from the baseline survey of the Henan Rural Cohort Study.

View Article and Find Full Text PDF

Association between non-insulin-based insulin resistance surrogate makers and Helicobacter pylori infection: a population-based study.

BMC Gastroenterol

January 2025

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Current evidence on the associations between insulin resistance (IR) and Helicobacter pylori (H. pylori) infection remains limited. This study aimed to investigate the association between non-insulin-based surrogate markers of IR, including the triglyceride glucose (TyG) index, triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, and the metabolic score for IR (METS-IR), and H.

View Article and Find Full Text PDF

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

The duration of mechanical systole-also termed the flow time (FT) or left ventricular ejection time (LVET)-is measured by Doppler ultrasound and increasingly used as a stroke volume (SV) surrogate to guide patient care. Nevertheless, confusion exists as to the determinants of FT and a critical evaluation of this measure is needed. Using Doppler ultrasound of the left ventricular outflow tract velocity time integral (LVOT VTI) as well as strain and strain rate echocardiography as grounding principles, this brief commentary offers a model for the independent influences of FT.

View Article and Find Full Text PDF

Combination therapy with anti-angiogenic drugs and immune checkpoint inhibitors has shown enhanced clinical activity and has been approved for the treatment of multiple tumor types. Despite extensive research, predictive biomarkers for combination therapy remain poorly understood. Microvessel density (MVD), a surrogate marker for aberrant angiogenesis measured by immunohistochemistry (IHC), has been associated with response to monotherapy with anti-angiogenesis inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!