Background: Chronic venous disease (CVD) is a common disorder of lower extremities.
Objectives: The study was scheduled to investigate the relationship between polymorphisms in major proinflammatory genes TNF α (-238 A/G; -308 A/G), TNF β (NcoI), IL-1β (+3953 T/C); IL-6 (-174 G/C; -596 G/C) and ADAM17 (3'TACE) and CVD risk. Genotype-phenotype study was calculated to test possible association between examined genotypes and phenotypes of CVD.
Methods: Finally, 150 CVD patients and 227 control subjects were enrolled to the study. Genotypes in proinflammatory gene polymorphisms were identified from isolated DNA by PCR method and restriction analysis.
Results: Significant differences in genotype distribution/allelic frequencies in TNF β gene, IL-1 β gene and in ADAM17 gene polymorphisms were found between CVD women and control ones. In the genotype-phenotype study, identified genotypes were associated with arterial hypertension (ADAM17, IL-6-men), ischaemic heart disease (TNF α and β genes), diabetes mellitus (ADAM17-women, TNF β-men), age of CVD onset (TNF α and IL-6), ulceration (ADAM17), duration of ulceration (ADAM17), ulceration recurrence (ADAM17-women), home care necessity (TNF α), varices surgery (TNF α), erysipelas development (ADAM17-men) and tumour development (TNF α).
Conclusion: Studying of these polymorphisms associations can help us better identify patients at higher risk of developing severe CVD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jdv.18770 | DOI Listing |
Odontology
January 2025
Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.
View Article and Find Full Text PDFEur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, Madhya Pradesh, India.
Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.
View Article and Find Full Text PDFFood Funct
January 2025
Academy of National Food and Strategic Reserves Administration, Beijing, China.
The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!