Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Practicing endoscopic procedures is fundamental for the education of clinicians and the benefit of patients. Despite a diverse variety of model types, there is no system simulating anatomical restrictions and variations in a flexible and atraumatic way. Our goal was to develop and validate a new modelling approach for adhesion forces between colon and abdominal wall.
Methods: An inlay for a standard mechanical trainer was designed and 3D printed. Colon specimens were fixed to the inlay along colon ascendens (CA) and colon descendens (CD) by a vacuum. Our system, which we refer to as Colonoscopy Vacuum Model (CoVaMo), was validated with 11 test persons with varying level of expertise. Each performed one colonoscopy and one polypectomy in the CoVaMo and in the Endoscopic Laparoscopic Interdisciplinary Training Entity (ELITE). Achieved adhesion forces, times required to fulfill different tasks endoscopically and a questionnaire, assessing proximity to reality, were recorded.
Results: Mean adhesion forces of 37 ± 7 N at the CA and 30 ± 15 N at the CD were achieved. Test subjects considered CoVaMo more realistic than ELITE concerning endoscope handling and the overall anatomy. Participants needed statistically significantly more time to maneuver from anus to flexura sinistra in CoVaMo (377 s ± 244 s) than in ELITE (58 s ± 49 s).
Conclusion: We developed a training environment enabling anatomically and procedural realistic colonoscopy training requiring participants to handle all endoscope features in parallel. Fixation forces compare to forces needed to tear pig colon off the mesentery. Workflow and inlay can be adapted to any arbitrary ex vivo simulator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883325 | PMC |
http://dx.doi.org/10.1007/s11548-022-02792-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!