Since epigenetic modifications differ from cell to cell, detecting the DNA methylation status of individual cells is requisite. Therefore, it is important to conduct "morphology-based epigenetics research", in which the sequence-specific DNA methylation status is observed while maintaining tissue architecture. Here we demonstrate a novel histochemical technique that efficiently shows the presence of a single methylated cytosine in a sequence-dependent manner by applying ICON (interstrand complexation with osmium for nucleic acids) probes. By optimizing the concentration and duration of potassium osmate treatment, ICON probes selectively hybridize to methylated cytosine on tissue sections. Since the elongation process by rolling-circle amplification through the padlock probe and synchronous amplification by the hyperbranching reaction at a constant temperature efficiently amplifies the reaction, it is possible to specifically detect the presence of a single methylated cytosine. Since the ICON probe is cross-linked to the nuclear or mitochondrial DNA of the target cell, subsequent elongation and multiplication reactions proceed like a tree growing in soil with its roots firmly planted, thus facilitating the demonstration of methylated cytosine in situ. Using this novel ICON-mediated histochemical method, detection of the methylation of DNA in the regulatory region of the RANK gene in cultured cells and of mitochondrial DNA in paraffin sections of mouse cerebellar tissue was achievable. This combined ICON and rolling-circle amplification method is the first that shows evidence of the presence of a single methylated cytosine in a sequence-specific manner in paraffin sections, and is foreseen as applicable to a wide range of epigenetic studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006048 | PMC |
http://dx.doi.org/10.1007/s00418-022-02165-2 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
Cytosine methylation (mCG) is an important heritable epigenetic modification, yet its functions remain to be fully defined in important crops. This study investigates mCG in soybean following the loss-of-function mutation of two GmMET1 genes. We generated knockout mutants of GmMET1s by CRISPR-Cas9 and conducted comprehensive methylome and transcriptome analyses.
View Article and Find Full Text PDFFront Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFCharacterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFStructure
January 2025
Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. Electronic address:
NSUN6 preferentially catalyzes the methylation of cytosine nucleotides in mRNA substrates, which enhances transcription. Dysregulation of NSUN6 catalysis drives the oncogenesis of certain cancers. In this study, we determined the crystal structure of human NSUN6 in complex with its S-adenosyl-L-methionine analog and a bound NECT-2 3'-UTR RNA substrate at 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!