AI Article Synopsis

  • - The study analyzes genetic trends in maize breeding pipelines at CIMMYT across eastern/southern Africa, South Asia, and Latin America, using data from over 4,000 trials and 34,000 entries conducted globally over the last decade.
  • - Genetic improvements in grain yield were significant, with increases recorded at rates of 138 kg/ha/year in Eastern/Southern Africa, 118 kg/ha/year in South Asia, and 143 kg/ha/year in Latin America.
  • - The research indicates that success in genetic improvement is linked to the use of new breeding technologies, effective phenotyping networks, and stable funding, exemplified by the Eastern Africa Product Profile 1a pipeline achieving a 2.46%

Article Abstract

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha yr in ESA, 118 kg ha yr South Asia and 143 kg ha yr in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684471PMC
http://dx.doi.org/10.1038/s41598-022-24536-4DOI Listing

Publication Analysis

Top Keywords

genetic trends
16
breeding pipelines
16
tropical maize
8
maize breeding
8
south asia
8
latin america
8
genetic trend
8
tools/technologies increase
8
genetic
7
breeding
6

Similar Publications

A significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.

View Article and Find Full Text PDF

Background: Alcohol use in autism spectrum disorder (ASD) is under-researched. Previous reviews have explored substance use as a whole, but this neglects individual characteristics unique to different substances. Alcohol use in non-clinical samples is associated with diverse responses.

View Article and Find Full Text PDF

Background: Nonpharmaceutical interventions for coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, during the pandemic altered the epidemiology of respiratory viruses. This study aimed to determine the changes in respiratory viruses among children hospitalized from 2018 to 2023.

Methods: Nasopharyngeal specimens were collected from children aged under 15 years with fever and/or respiratory symptoms admitted to a medical institution in Fukushima Prefecture between January 2018 and December 2023.

View Article and Find Full Text PDF

Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial cells, are widely used in pediatric DNA methylation studies and biomarker creation. However, the decrease in buccal proportion with age in adults remains unexamined in childhood. We analyzed cheek swabs from 4626 typically developing children 2-months to 20-years-old.

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!