Identifying, quantifying, and suppressing decoherence mechanisms in qubits are important steps towards the goal of engineering a quantum computer or simulator. Superconducting circuits offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs). Developing a quasiparticle mitigation strategy compatible with scalable, high-coherence devices is therefore highly desirable. Here we experimentally demonstrate how to control quasiparticle generation by downsizing the qubit, capping it with a metallic cover, and equipping it with suitable quasiparticle traps. Using a flip-chip design, we shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning. Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction, as a result of photon absorption by the antenna-like qubit structure. We achieve record low charge-parity switching rate (<1 Hz). Our aluminium devices also display improved stability with respect to discrete charging events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684549 | PMC |
http://dx.doi.org/10.1038/s41467-022-34727-2 | DOI Listing |
Homozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.
View Article and Find Full Text PDFData Brief
February 2025
Department of Medicine, Division of Cardiovascular Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
Commun Med (Lond)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).
View Article and Find Full Text PDFAdv Mater
December 2024
Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.
View Article and Find Full Text PDFPediatr Infect Dis J
October 2024
From the Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.
Background: When coronavirus disease 2019 (COVID-19) mitigation efforts waned, viral respiratory infections (VRIs) surged, potentially increasing the risk of postviral invasive bacterial infections (IBIs). We sought to evaluate the change in epidemiology and relationships between specific VRIs and IBIs [complicated pneumonia, complicated sinusitis and invasive group A streptococcus (iGAS)] over time using the National COVID Cohort Collaborative (N3C) dataset.
Methods: We performed a secondary analysis of all prospectively collected pediatric (<19 years old) and adult encounters at 58 N3C institutions, stratified by era: pre-pandemic (January 1, 2018, to February 28, 2020) versus pandemic (March 1, 2020, to June 1, 2023).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!