Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00867 | DOI Listing |
Chem Asian J
January 2025
Towson University, 8000 York Road, SC 3301B, 21252, Towson, UNITED STATES OF AMERICA.
Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e- superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au11 nanocluster, obtaining a cluster with a proposed molecular formula PtAu10(PPh3)7Br3.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!