Determining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H or Na ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales. Here, we used CRISPR engineering to replace the native H-powered stator with Na-powered stator genes and report the spontaneous reversion of our edit in a low-sodium environment. We followed the evolution of the stators during their reversion to H-powered motility and used both whole-genome and RNA sequencing to identify genes involved in the cell's adaptation. Our transplant of an unfit protein and the cells' rapid response to this edit demonstrate the adaptability of the stator subunit and highlight the hierarchical modularity of the flagellar motor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683732 | PMC |
http://dx.doi.org/10.1126/sciadv.abq2492 | DOI Listing |
ACS Nano
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.
Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India.
Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!