Tiny "gnat robots," weighing just a few milligrams, were first conjectured in the 1980s. How to stabilize one if it were to hover like a small insect has not been answered. Challenges include the requirement that sensors be both low mass and high bandwidth and that silicon-micromachined rate gyroscopes are too heavy. The smallest robot to perform controlled hovering uses a sensor suite weighing hundreds of milligrams. Here, we demonstrate that an accelerometer represents perhaps the most direct way to stabilize flight while satisfying the extreme size, speed, weight, and power constraints of a flying robot even as it scales down to just a few milligrams. As aircraft scale reduces, scaling physics dictates that the ratio of aerodynamic drag to mass increases. This results in reduced noise in an accelerometer's airspeed measurement. We show through simulation and experiment on a 30-gram robot that a 2-milligram off-the-shelf accelerometer is able in principle to stabilize a 10-milligram robot despite high noise in the sensor itself. Inspired by wind-vision sensory fusion in the flight controller of the fruit fly , we then added a tiny camera and efficient, fly-inspired autocorrelation-based visual processing to allow the robot to estimate and reject wind as well as control its attitude and flight velocity using a Kalman filter. Our biology-inspired approach, validated on a small flying helicopter, has a wind gust response comparable to the fruit fly and is small and efficient enough for a 10-milligram flying vehicle (weighing less than a grain of rice).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.abq8184 | DOI Listing |
PeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFCurr Res Insect Sci
December 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance.
View Article and Find Full Text PDFMethodsX
June 2025
Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
The entomopathogenic nematodes (EPNs) Steinernema carpocapsae and Steinernema hermaphroditum can efficiently infect the fruit fly, Drosophila melanogaster. The EPN infective juvenile (IJ) stage is the free-living and non-feeding stage that seeks out suitable insects to infect. While previous studies have described successful infection of melanogaster larvae with a standard amount of 100 IJs, the pathogenicity of a single IJ nematode towards insects remains poorly understood.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.
View Article and Find Full Text PDFFood Chem
January 2025
Integrated Crop Production Research Unit, Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco.
Argan (Argania spinosa (L.) Skeels) is an endangered agroforestry species known for producing one of most expensive and sought-after oils in the world. Argan forests are a suitable habitat for medfly (Ceratitis capitata).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!