Phytophthora species are primary causal agents of raspberry root rot and wilting complex (RRWC), a disease complex that is of major concern to raspberry producers worldwide. Accurate identification of the causal agents is a first step for effective disease management. Advancements in molecular diagnostics can facilitate the detection of multiple pathogen species associated with this disease complex. We developed multiplex targeted-sequencing methods using degenerate primers for heat shock protein 90, elongation factor 1α and β-tubulin genes to identify Phytophthora species causing RRWC. One hundred and twenty-eight isolates recovered during 2018 to 2020 from diverse fields in major raspberry growing areas of British Columbia (BC) were sequenced and identified by comparing with known reference sequences of 142 Phytophthora species, 111 Pythium species, and nine Phytopythium species in the NCBI database. This multiplex targeted-sequencing method was highly specific and identified two species of Phytophthora associated with RRWC. These were P. rubi (85% of isolates) and P. gonapodyides (15% of isolates). Phytophthora rubi was predominantly isolated from the cultivars 'Chemainus' (51%), 'Rudi' (27%) and 'Meeker' (15%), whereas P. gonapodyides was predominately isolated from the moderately resistant cultivar 'Cascade Bounty'. Pathogenicity studies on intact plants and detached leaves confirmed that P. rubi and P. gonapodyides can cause symptoms of RRWC on raspberry, thus fulfilling Koch's postulates. To our knowledge, this is the first report of P. gonapodyides as a causal agent of RRWC on raspberry in BC. This study provides novel insights into the identification and species composition of Phytophthora associated with RRWC in raspberry production systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683591 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275384 | PLOS |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
Yeast two-hybrid library screening enables the discovery of novel protein-protein interactions. Identifying cytosolic host proteins targeted by host-translocated Phytophthora effector proteins relies on the mRNA amount, quality, and composition used to prepare the yeast two-hybrid cDNA library. Here we describe the steps required for the preparation of a Pinus radiata cDNA library optimized for Phytophthora effector target screening in yeast.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Here, we present a protocol for the isolation and detection of Phytophthora oospores directly from soil samples. Our method incorporates a novel technique for isolating Phytophthora oospores using filter pouches and an improved DNA extraction procedure specifically designed for oospores. While we have primarily developed this protocol for detecting P.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
The establishment of reliable and efficient systems for genome editing in Phytophthora is very important for studying gene functions. Here, step-by-step methods for CRISPR/Cas9-based gene knockout and in situ complementation for Phytophthora sojae are presented. These steps include the sgRNA design, Cas9-sgRNA plasmid construction, homologous replacement, complementation vector construction, P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!