The leaves of Piper auritum Kunth ('Hoja Santa') have been consumed for centuries by native people of central and southern Mexico as a fresh vegetable or condiment. Herein we present the result of the H-NMR metabolomics profiling of three accessions of P. auritum harvested in three different provinces of Mexico (Puebla, Tlaxcala, and Oaxaca). The volatile content associated with the flavoring properties of the plant was also determined by GC/MS. The non-targeted metabolome of these samples revealed that P. auritum is a source of free essential amino acids such as isoleucine, leucine, threonine, valine, histidine, phenylalanine, and tryptophan as well as organic acids, free monosaccharides, and valuable nutraceuticals such as trigonelline, Myo-inositol, betaine, and choline. Principal component analysis and orthogonal partial least squares discriminated analysis of the metabolites found in P. auritum revealed trigonelline as the main differential compound found in the three studied accessions, suggesting this metabolite as a possible chemical marker. According to these statistical approaches, 60 % of the differential metabolites were provided by Oaxaca samples, suggesting that leaves harvested in this province have better (p<0.05) nutritional properties than the other samples analyzed. Nevertheless, the high abundance of the anti-nutrient safrole (90 %) in the volatile fraction, advises the potential toxicity of P. auritum consumed in Oaxaca. On the other hand, samples harvested in the northern highlands of Puebla, contained the lowest levels of safrole (30 %) and acceptable levels of nutrients and nutraceuticals including choline. From the three groups of studied plants, those harvested in the northern highlands from Puebla, could be considered safer for human consumption than the other analyzed accessions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202200667 | DOI Listing |
Bioinform Adv
November 2024
Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku 20500, Finland.
Motivation: NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research.
View Article and Find Full Text PDFLife Sci
December 2024
State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:
Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.
View Article and Find Full Text PDFSkelet Muscle
December 2024
Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE mice using solution and high-resolution-magic angle spinning (HR-MAS) H-NMR spectroscopy.
View Article and Find Full Text PDFADMET DMPK
December 2024
Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.
Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.
Biomed Chromatogr
January 2025
Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
Astragali Radix (AR) is one of the monarch drugs of Fangji Huangqi decoction and has the effects of inducing diuresis to alleviate edema, tonifying and strengthening the body. However, there is a paucity of research regarding the effective fraction and the underlying metabolic mechanism of AR on nephrotic syndrome (NS). This work aims to elucidate the potential mechanisms of AR treating NS, as well as to identify effective part and components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!