Fc γ receptors (FcγRs) are one of the structures that can initiate effector function for monoclonal antibodies. FcγRIa has the highest affinity toward IgG1-type monoclonal antibodies among all FcγRs. In this study, a comprehensive characterization was performed for FcγRIa as a potential affinity ligand for IgG1-type monoclonal antibody binding. The binding interactions were assessed with the SPR technique using different immobilization techniques such as EDC-NHS coupling, streptavidin-biotin interaction, and His-tagged FcγRIa capture. The His-tagged FcγRIa capture was the most convenient method based on assay repeatability. Next, a crude IgG1 sample and its fractions with different monomer contents obtained from protein A affinity chromatography were used to evaluate FcγRIa protein in terms of monoclonal antibody binding capacity. The samples were also compared with a protein A-immobilized chip (a frequently used affinity ligand) for IgG1 binding responses. The antibody binding capacity of the protein A-immobilized chip surface was significantly better than that of the FcγRIa-immobilized chip surface due to its 5 Ig binding domains. The antibody binding responses changed similarly with protein A depending on the monomer content of the sample. Finally, a different configuration was used to assess the binding affinity of free FcγRs (FcγRIa, FcγRIIa, and FcγRIIIa) to three different immobilized IgGs by immobilizing protein L to the chip surface. Unlike previous immobilization techniques tested where the FcγRIa was utilized as a ligand, nonimmobilized or free FcγRIa resulted in a significantly higher antibody binding response than free protein A. In this configuration, kinetics data of FcγRI revealed that the association rate ( 50-80 × 10 M s) increased in comparison to His capture method (1.9-2.4 × 10 M s). In addition, the dissociation rate ( 10 s) seemed slower over the His capture method (10 s) and provided stability on the chip surface during the dissociation phase. The values for FcγRIa were found in the picomolar range (2.1-10.33 pM from steady-state affinity analysis and 37.5-46.2 pM from kinetic analysis) for IgG1-type antibodies. FcγRIa possesses comparable ligand potential as well as protein A. Even though the protein A-immobilized surface bound more antibodies than the FcγRIa-captured surface, FcγRIa presented a significant antibody binding capacity in protein L configuration. The results suggest FcγRIa protein as a potential ligand for site-oriented immobilization of IgG1-type monoclonal antibodies, and it needs further performance investigation on different surfaces and interfaces for applications such as sensing and antibody purification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730901 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.2c02022 | DOI Listing |
Thromb J
January 2025
Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
The REAADS VWF activity assay is often assumed to be specific for the A1 domain, the portion of VWF that binds platelet GPIbα. We tested this assay on the A1A2A3 region of VWF with each domain expressed independently of one another and together in combination as a tri-domain. The monoclonal antibody used in this assay is found to be insensitive to the single A domains and does not recognize free A1 domains as it is often assumed.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Thymidine kinase 1 (TK1), a crucial enzyme in DNA synthesis, is highly expressed in various cancers. However, the mechanisms underlying its elevated expression and the implications for tumor metabolism remain unclear. Here we demonstrate that activation of growth factor receptors enhances TK1 expression.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.
View Article and Find Full Text PDFMol Immunol
January 2025
Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563003, China. Electronic address:
Background: Midges are widely distributed globally. They can transmit numerous serious diseases as well as trigger an allergic reaction in the host. Their saliva contains a variety of proteins that act as sensitizers to stimulate the host's immune response, leading to IgE-mediated allergic symptoms.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:
The importance of in vitro diagnostics (IVDs) has significantly increased, driving the demand for rapid and sensitive diagnostic platforms. Molecular probes play a pivotal role in improving the sensitivity and accuracy of IVDs because of their target-specific signal transduction capabilities. Antibodies, which are commonly used as detection probes, face several challenges, including limited stability, high production costs, and low signal output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!