Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201431PMC
http://dx.doi.org/10.1093/nar/gkac1060DOI Listing

Publication Analysis

Top Keywords

helicase recruitment
12
dna replication
12
bacillus subtilis
8
mechanisms underpinning
8
replication initiation
8
helicase
5
sira inhibits
4
inhibits essential
4
essential dnaadnad
4
interaction
4

Similar Publications

Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.

View Article and Find Full Text PDF

Distinct pathways utilized by METTL3 to regulate antiviral innate immune response.

iScience

November 2024

Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.

Article Synopsis
  • METTL3 is a key enzyme that adds m6A modifications to RNA, impacting innate immunity and viral responses.
  • Infection with EV71 increases METTL3 levels in both IFN-deficient and proficient cells through changes in transcription and protein modifications.
  • METTL3 regulates antiviral responses through both m6A-dependent and independent mechanisms, suggesting it could be a valuable target for developing antiviral treatments.
View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.

View Article and Find Full Text PDF

Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!