DNA-binding proteins (DBPs) play crucial roles in numerous cellular processes including nucleotide recognition, transcriptional control and the regulation of gene expression. Majority of the existing computational techniques for identifying DBPs are mainly applicable to human and mouse datasets. Even though some models have been tested on Arabidopsis, they produce poor accuracy when applied to other plant species. Therefore, it is imperative to develop an effective computational model for predicting plant DBPs. In this study, we developed a comprehensive computational model for plant specific DBPs identification. Five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms. In particular, support vector machine achieved highest repeated 5-fold cross-validation accuracy of 94.0% area under receiver operating characteristic curve (AUC-ROC) and 93.5% area under precision recall curve (AUC-PR). With an independent dataset, the developed approach secured 93.8% AUC-ROC and 94.6% AUC-PR. While compared with the state-of-art existing tools by using an independent dataset, the proposed model achieved much higher accuracy. Overall results suggest that the developed computational model is more efficient and reliable as compared to the existing models for the prediction of DBPs in plants. For the convenience of the majority of experimental scientists, the developed prediction server PlDBPred is publicly accessible at https://iasri-sg.icar.gov.in/pldbpred/.The source code is also provided at https://iasri-sg.icar.gov.in/pldbpred/source_code.php for prediction using a large-size dataset.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac483DOI Listing

Publication Analysis

Top Keywords

computational model
16
shallow learning
8
deep learning
8
independent dataset
8
computational
5
model
5
dbps
5
pldbpred novel
4
novel computational
4
model discovery
4

Similar Publications

With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter- and intra-specific), pollinators and insect herbivores on plant performance (i.e.

View Article and Find Full Text PDF

Endohedral boron-doped scandium clusters BSc ( = 2-3, = 3-13): triangular - linear rearrangement of the B dopant.

Dalton Trans

January 2025

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

A theoretical investigation, employing density functional theory with the PBE functional and the Def2-TZVP basis set, comprehensively explores the geometric and electronic structures and properties of the boron doped scandium clusters BSc with = 2-3 and = 3-13. Introduction of B atoms significantly enhances the stability of the resulting clusters with respect to the initial counterparts. As the number of B atoms increases, the stability of the doped clusters improves, following the order: BSc > BSc > BSc > Sc.

View Article and Find Full Text PDF

The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods.

View Article and Find Full Text PDF

Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties.

View Article and Find Full Text PDF

Prognostic value of interim [F]FDG PET/CT after immunotherapy-based combinations in extranodal NK/T-cell lymphoma, nasal type.

Eur Radiol

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Purpose: To evaluate the prognostic value of interim [F]Fluorodeoxyglucose positron emission tomography/computed tomography ([F]FDG PET/CT) after immunotherapy-based systemic therapies in extranodal natural killer/T-cell lymphoma (ENKTL).

Patients And Methods: We retrospectively recruited 133 newly diagnosed nasal-type ENKTL patients who underwent interim [F]FDG PET/CT scans after 2-4 cycles of immunotherapy-based treatments. Interim PET/CT was interpreted by maximum standardized uptake value (SUV), Deauville 5-point scale (DS), and early treatment response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!