Oligodendrocyte lineage cells: Advances in development, disease, and heterogeneity.

J Neurochem

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Published: February 2023

AI Article Synopsis

  • Oligodendrocyte progenitor cells (OPCs) develop in the brain and spinal cord and primarily differentiate into oligodendrocytes (OLs), which are crucial for myelin production.
  • Recent studies highlight that both OPCs and OLs exhibit variability in their characteristics, making traditional methods like Bulk RNA-seq inadequate for understanding their diversity.
  • Advanced techniques, such as single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq), have been employed to analyze distinct subpopulations of OL lineage cells, enhancing our understanding of their development and relevance in various diseases.

Article Abstract

Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15728DOI Listing

Publication Analysis

Top Keywords

lineage cells
8
cells
5
oligodendrocyte lineage
4
cells advances
4
advances development
4
development disease
4
disease heterogeneity
4
heterogeneity oligodendrocyte
4
oligodendrocyte progenitor
4
progenitor cells
4

Similar Publications

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) are consistently discovering genetic variants linked to the risk of developing this neurodegenerative condition. However, the effect size of the shared associated loci varies across populations as well as each population can have unique associations. This phenomenon could be explained by ancestry-dependent changes in the genomic regulatory architecture (GRA) influencing the expression of these genes, similar to the effect of different local ancestry on the risk of AD in APOE4 carriers.

View Article and Find Full Text PDF

Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!