Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681044PMC
http://dx.doi.org/10.1101/2022.11.17.516888DOI Listing

Publication Analysis

Top Keywords

ba2752 bq11
12
breakthrough infection
12
omicron subvariants
8
subvariants ba2752
8
ba2752 ba46
8
bq11
8
ba46 bq11
8
ba5 breakthrough
8
bq11 ba2752
8
infection increased
8

Similar Publications

Adaptability of single-nucleotide polymorphism-polymerase chain reaction (SNP-PCR) for subtyping SARS-CoV-2 and a new SNP-PCR for XBB, XBB.1.5, and B.Q.1/B.Q.1.1.

Clin Microbiol Infect

October 2023

Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. Electronic address:

View Article and Find Full Text PDF

Background: Diphtheria is a potentially fatal respiratory disease caused by toxigenic Corynebacterium diphtheriae. Although resistance to erythromycin has been recognized, β-lactam resistance in toxigenic diphtheria has not been described. Here, we report a case of fatal respiratory diphtheria caused by toxigenic C.

View Article and Find Full Text PDF

Influence of gender differences in the carbon pool on dose factors for intakes of tritium and 14C-labeled compounds.

Health Phys

September 2001

Radiation Biology and Health Physics Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Ontario.

The ICRP's biokinetic models for five tritium-labeled and five 14C-labeled compounds (not including radiopharmaceutical compounds and excepting carbon monoxide) incorporate a compartment representing the body carbon pool. Using the ICRP models, as coded into the Genmod-PC internal dosimetry code, higher dose coefficients are calculated for females than for ICRP's Reference Man. The ICRP's committed effective dose coefficients for the ingestion of tritiated water and organically bound tritium by the adult male are 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!