Fabrication of heterojunction semiconductors for the photodegradation of toxic organic dyes under sunlight exposure has earned significant recognition from researchers nowadays. On that account, we have synthesized and explored a comparative photodegradation study of ZnO/CuO nanocomposite with ZnO and CuO nanoparticles. ZnO and CuO nanoparticles have been synthesized by biosynthesis methods using Ficus benghalensis leaf extract. As-synthesized ZnO and CuO nanoparticles have been further utilized for the synthesis of ZnO/CuO nanocomposite by the mortar pestle crushing/milling method. Both biosynthesis methods and mortar pestle crushing/milling methods are simple, low-cost, and environmentally friendly. Structural, optical, and morphological analysis of all the synthesized nanomaterials have been done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. PXRD data reveal that synthesized ZnO nanoparticles are in the hexagonal wurtzite phase, CuO nanoparticles in the monoclinic phase, and ZnO/CuO nanocomposite in the hexagonal wurtzite as well as in monoclinic phase. FE-SEM and TEM images of ZnO/CuO nanocomposite reveal the nanorod-shaped morphology along with micro-sized and nano-sized flakes. The BET analysis shows the surface areas 18.128 m/g for ZnO nanoparticles, 16.653 m/g for CuO nanoparticles, and 19.580 m/g for ZnO/CuO nanocomposite, respectively. The energy band gap values of ZnO/CuO nanocomposite are obtained 3.13 eV for ZnO and 2.76 eV for CuO, respectively. The photocatalytic behaviors of all the synthesized nanomaterials are examined against aqueous dye solutions of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) under sunlight irradiation. The results reveal that the photocatalytic degradation efficiency of ZnO/CuO nanocomposite has been found higher than with ZnO and CuO nanoparticles for all the dyes. Also, all the synthesized nanomaterials indicate higher photocatalytic degradation efficiency for methylene blue dye among all three dyes. The kinetics of photodegradation of all the dye solutions has also been investigated in the presence of ZnO, CuO, and ZnO/CuO photocatalysts separately. The results exhibit that rate constant values for all the dyes are higher with ZnO/CuO nanocomposite than with ZnO and CuO nanoparticles. ZnO/CuO nanocomposite demonstrates degradation efficiency for MB dye 99.13%, for RhB 80.21%, and for MO 67.22% after 180 min of sunlight exposure. ZnO/CuO nanocomposite and ZnO and CuO nanoparticles also show the best reusability and stability up to three cycles for photocatalytic degradation of MB dyes among all the dyes. Therefore, green synthesized ZnO/CuO nanocomposite could be used as an efficient photocatalyst for the degradation of various toxic dyes. The mineralization of different dyes using ZnO/CuO nanocomposite has been examined by FTIR analysis. Furthermore, the mineralization of MB dye has been done by total organic carbon (TOC) measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24139-6 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P. O. Box 1888 Adama Ethiopia
Nanoscale
October 2024
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
Metallized film capacitors use plastic films as the dielectric spacer, and these polymer films generally have low dielectric constants. To boost the electrostatic energy storage density of a film capacitor, advanced high- films with high electrical breakdown strength and low dielectric loss are highly desired. Herein, polymer nanocomposite films were made by filling ZnO@CuO nanosheets into poly(vinylidene fluoride--hexafluoropropylene) [P(VDF-HFP)].
View Article and Find Full Text PDFMikrochim Acta
August 2024
College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
With the increasing demand for fruits and vegetables in the market, the development of cold chain logistics has put forward higher requirements for the quality of fruits and vegetables in storage. To ensure the freshness of fruits and vegetables during storage and transportation and avoid unnecessary loss, it is necessary to conduct real-time detection of their odor to ensure their quality. Therefore, based on nano-composite materials combined with Radio Frequency Identification (RFID) technology, this paper designs an integrated RFID sensor that can simultaneously detect temperature, carbon dioxide, and ethanol concentrations.
View Article and Find Full Text PDFEnviron Geochem Health
July 2024
Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar.
This study successfully synthesized ZnO-CuO nanocomposite using the hydrothermal method with Carica papaya leaf extract. The incorporation of the leaf extract significantly enhanced the nanocomposite properties, a novel approach in scientific research. Characterization techniques, including X-ray diffraction, Fourier Transmission Infrared spectroscopy, and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis, confirmed a cubic crystal structure with an average size of 22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!