A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying high crash risk segments in rural roads using ensemble decision tree-based models. | LitMetric

Identifying high crash risk segments in rural roads using ensemble decision tree-based models.

Sci Rep

Civil and Infrastructure Engineering Discipline, RMIT University, Melbourne, Australia.

Published: November 2022

Traffic safety forecast models are mainly used to rank road segments. While existing studies have primarily focused on identifying segments in urban networks, rural networks have received less attention. However, rural networks seem to have a higher risk of severe crashes. This paper aims to analyse traffic crashes on rural roads to identify the influencing factors on the crash frequency and present a framework to develop a spatial-temporal crash risk map to prioritise high-risk segments on different days. The crash data of Khorasan Razavi province is used in this study. Crash frequency data with the temporal resolution of one day and spatial resolution of 1500 m from loop detectors are analysed. Four groups of influential factors, including traffic parameters (e.g. traffic flow, speed, time headway), road characteristics (e.g. road type, number of lanes), weather data (e.g. daily rainfall, snow depth, temperature), and calendar variables (e.g. day of the week, public holidays, month, year) are used for model calibration. Three different decision tree algorithms, including, Decision Tree (DT), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) have been employed to predict crash frequency. Results show that based on the traditional evaluation measures, the XGBosst is better for the explanation and interpretation of the factors affecting crash frequency, while the RF model is better for detecting trends and forecasting crash frequency. According to the results, the traffic flow rate, road type, year of the crash, and wind speed are the most influencing variables in predicting crash frequency on rural roads. Forecasting the high and medium risk segment-day in the rural network can be essential to the safety management plan. This risk will be sensitive to real traffic data, weather forecasts and road geometric characteristics. Seventy percent of high and medium risk segment-day are predicted for the case study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681741PMC
http://dx.doi.org/10.1038/s41598-022-24476-zDOI Listing

Publication Analysis

Top Keywords

crash frequency
24
rural roads
12
crash
10
crash risk
8
rural networks
8
factors crash
8
traffic flow
8
road type
8
decision tree
8
high medium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!