Beyond single-crystal surfaces: The GAL21 water/metal force field.

J Chem Phys

Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France.

Published: November 2022

Solvent effects are notoriously difficult to describe for metallic nanoparticles (NPs). Here, we introduce GAL21 which is the first pairwise additive force field that is specifically designed to modulate the near chemisorption energy of water as a function of the coordination numbers of the metallic atoms. We find a quadratic dependence to be most suitable for capturing the dependence of the adsorption energy of water on the generalized coordination number (GCN) of the metal atoms. GAL21 has been fitted against DFT adsorption energies for Cu, Ag, Au, Ni, Pd, Pt, and Co on 500 configurations and validated on about 3000 configurations for each metal, constructed on five surfaces with GCNs varying from 2.5 to 11.25. Depending on the metals, the root mean square deviation is found between 0.7 kcal mol (Au) to 1.6 kcal mol (Ni). Using GAL21, as implemented in the open-source code CP2K, we then evaluate the solvation energy of Au and Pt NPs in water using thermodynamic integration. The solvation free energy is found to be larger for Pt than for Au and systematically larger than 200 kcal mol, demonstrating the large impact of solvent on the surface energetics of NPs. Still, given that the amorphous NPs are both, the most stable and the most solvated ones, we do not predict a change in the preferred morphology between the gas-phase and in water. Finally, based on a linear regression on three sizes of NPs (from 38 to 147), the solvation energy for Au and Pt surface atoms is found to be -5.2 and -9.9 kcal mol, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0130368DOI Listing

Publication Analysis

Top Keywords

force field
8
energy water
8
solvation energy
8
nps
5
energy
5
single-crystal surfaces
4
gal21
4
surfaces gal21
4
gal21 water/metal
4
water/metal force
4

Similar Publications

Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.

Objective.

View Article and Find Full Text PDF

Purposeful movement often requires selection of a particular action from a range of alternatives, but how does the brain represent potential actions so that they can be compared for selection, and how are motor commands generated if movement is initiated before the final goal is identified? According to one hypothesis, the brain averages partially prepared motor plans to generate movement when there is goal uncertainty. This is consistent with the idea that motor decision-making unfolds through competition between internal representations of alternative actions. An alternative hypothesis holds that only one movement, which is optimized for task performance, is prepared for execution at any time.

View Article and Find Full Text PDF

Comparison Between Molecular Dynamics Potentials for Simulation of Graphene-Based Nanomaterials for Biomedical Applications.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia.

Objective: This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs).

Significance: GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood.

View Article and Find Full Text PDF

In Situ Mechanics of the Cytoskeleton.

Cytoskeleton (Hoboken)

January 2025

Department of Science, Yokohama City University, Yokohama, Japan.

Not only for man-made architecture but also for living cells, the relationship between force and structure is a fundamental properties that governs their mechanical behaviors. However, our knowledge of the mechanical properties of intracellular structures is very limited because of the lack of direct measurement methods. We established high-force intracellular magnetic tweezers that can generate calibrated forces up to 10 nN, enabling direct force measurements of the cytoskeleton.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!