Brain circuits are composed of diverse cell types with distinct morphologies, connections, and distributions of ion channels. Modeling suggests that the spatial distribution of the extracellular voltage during a spike depends on cellular morphology, connectivity, and identity. However, experimental evidence from the intact brain is lacking. Here, we combined high-density recordings from hippocampal region CA1 and neocortex of freely moving mice with optogenetic tagging of parvalbumin-immunoreactive (PV) cells. We used ground truth tagging of the recorded pyramidal cells (PYR) and PV cells to construct binary classification models. Features derived from single-channel waveforms or from spike timing alone allowed near-perfect classification of PYR and PV cells. To determine whether there is unique information in the spatial distribution of the extracellular potentials, we removed all single-channel waveform information from the multichannel waveforms using an event-based delta-transformation. We found that spatiotemporal features derived from the transformed waveforms yield accurate classification. The extracellular analog of the spatial distribution of the initial depolarization phase provided the highest contribution to the spatially based prediction. Compared with PV cell spikes, PYR spikes exhibited higher spatial synchrony at the beginning of the extracellular spike and lower synchrony at the trough. The successful classification of PYR and PV cells based on purely spatial features provides direct experimental evidence that spikes of distinct cell types are associated with distinct spatial distributions of extracellular potentials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744183 | PMC |
http://dx.doi.org/10.1523/ENEURO.0265-22.2022 | DOI Listing |
Nano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy.
Aromia bungii is an invasive Cerambycidae of major concern at the global scale because of the damage caused to Rosaceae. Given the major phytosanitary relevance of A. bungii, predicting its spread in invaded areas and identifying possible new suitable regions worldwide remains a key action to develop appropriate management practices and optimise monitoring and early detection campaigns.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
International Livestock Research Institute (ILRI), Human and Animal Health, Berlin, Germany.
Crimean Congo hemorrhagic fever (CCHF) is a re-emerging tick-borne zoonosis that is caused by CCHF virus (CCHFV). The geographical distribution of the disease and factors that influence its occurrence are poorly known. We analysed historical records on its outbreaks in various countries across the sub-Saharan Africa (SSA) to identify hotspots and determine socioecological and demographicfactors associated with these outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!