Functional Characterization of 12 Dihydropyrimidinase Allelic Variants in Japanese Individuals for the Prediction of 5-Fluorouracil Treatment-Related Toxicity.

Drug Metab Dispos

Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)

Published: February 2023

The drug 5-fluorouracil (5-FU) is the first-choice chemotherapeutic agent against advanced-stage cancers. However, 10% to 30% of treated patients experience grade 3 to 4 toxicity. The deficiency of dihydropyrimidinase (DHPase), which catalyzes the second step of the 5-FU degradation pathway, is correlated with the risk of developing toxicity. Thus, genetic polymorphisms within the DHPase-encoding gene, could potentially serve as predictors of severe 5-FU-related toxicity. We identified 12 novel variants in 3554 Japanese individuals, but the effects of these mutations on function remain unknown. In the current study, we performed in vitro enzymatic analyses of the 12 newly identified DHPase variants. Dihydrouracil or dihydro-5-FU hydrolytic ring-opening kinetic parameters, and , and intrinsic clearance ( = / ) of the wild-type DHPase and eight variants were measured. Five of these variants (R118Q, H295R, T418I, Y448H, and T513A) showed significantly reduced compared with that in the wild-type. The parameters for the remaining four variants (V59F, D81H, T136M, and R490H) could not be determined as dihydrouracil and dihydro-5-FU hydrolytic ring-opening activity was undetectable. We also determined DHPase variant protein stability using cycloheximide and bortezomib. The mechanism underlying the observed changes in the kinetic parameters was clarified using blue-native polyacrylamide gel electrophoresis and three-dimensional structural modeling. The results suggested that the decrease or loss of DHPase enzymatic activity was due to reduced stability and oligomerization of DHPase variant proteins. Our findings support the use of polymorphisms as novel pharmacogenomic markers for predicting severe 5-FU-related toxicity in the Japanese population. SIGNIFICANCE STATEMENT: DHPase contributes to the degradation of 5-fluorouracil, and genetic polymorphisms that cause decreased activity of DHPase can cause severe toxicity. In this study, we performed functional analysis of 12 DHPase variants in the Japanese population and identified 9 genetic polymorphisms that cause reduced DHPase function. In addition, we found that the ability to oligomerize and the conformation of the active site are important for the enzymatic activity of DHPase.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.122.001045DOI Listing

Publication Analysis

Top Keywords

genetic polymorphisms
12
dhpase variants
12
dhpase
11
variants japanese
8
japanese individuals
8
severe 5-fu-related
8
5-fu-related toxicity
8
study performed
8
dihydrouracil dihydro-5-fu
8
dihydro-5-fu hydrolytic
8

Similar Publications

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

The study found a significant causal relationship between coffee intake and obsessive-compulsive disorder, showing a negative correlation. There was no causal relationship between coffee intake and other mental disorders. The sensitivity analysis test found no pleiotropy affecting the results, and no single nucleotide polymorphism had a major impact on the robustness of the results, indicating that the results are stable and reliable.

View Article and Find Full Text PDF

Background: The study aimed to detect the association between insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and interleukin-6 (IL-6) polymorphisms among type 2 diabetes mellitus (T2DM).

Materials And Methods: This study involved 500 individuals; 250 obese DM cases and 250 healthy controls. The polymerase chain reaction restriction fragment length polymorphism was used to identify the genotype of the IGF2BP2 gene for the small nucleoproteins rs4402960 (G>T) and small nucleoproteins rs800795 (G>C).

View Article and Find Full Text PDF

Inactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different missense mutations cause disease.

View Article and Find Full Text PDF

Epstein-Barr virus, vitamin D and the immune response: connections with consequences for multiple sclerosis.

Front Immunol

January 2025

Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with no definitive trigger. However, epidemiological studies indicate that environmental factors, such as infection with Epstein-Barr virus (EBV) and low vitamin D (Vit D) levels in genetically predisposed individuals, are important risk factors. One leading proposal is that EBV triggers MS via mechanisms such as molecular mimicry, where activated autoreactive B and T lymphocytes mistakenly target self-antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!