Assessment of proteins in formalin-fixed paraffin-embedded (FFPE) tissue traditionally hinges on immunohistochemistry and immunoblotting. These methods are far from optimal for quantitative studies and not suitable for large-scale testing of multiple protein panels. In this study, we developed and optimised a novel targeted isotope dilution mass spectrometry (MS)-based method for FFPE samples, designed to quantitate 17 matrix and cytosolic proteins abundantly present in arterial tissue. Our new method was developed on FFPE human tissue samples of the internal thoracic artery obtained from coronary artery bypass graft (CABG) operations. The workflow has a limit of 60 samples per day. Assay precision improved by normalisation to both beta-actin and smooth muscle actin with inter-assay coefficients of variation (CV) ranging from 5.3% to 31.9%. To demonstrate clinical utility of the assay we analysed 40 FFPE artery specimens from two groups of patients with or without type 2 diabetes. We observed increased levels of collagen type IV α1 and α2 in patients with diabetes. The assay is scalable for larger cohorts and advantageous for pathophysiological studies in diabetes and the method is easily convertible to analysis of other proteins in FFPE artery samples. SIGNIFICANCE: This article presents a novel robust and precise targeted mass spectrometry assay for relative quantitation of a panel of abundant matrix and cellular arterial proteins in archived formalin-fixed paraffin-embedded arterial samples. We demonstrate its utility in pathophysiological studies of cardiovascular disease in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2022.104775 | DOI Listing |
Chemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!