Flexible and printable integrated biosensors for monitoring sweat and skin condition.

Anal Biochem

Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, 223002, China. Electronic address:

Published: January 2023

Wearable and flexible sensors are playing increasing roles in health monitoring (like physiological electrical signals and components of biofluids). Therein, sweat as a carrier of informative biomarkers would attract great attention for health status identification. However, most wearable biosensors have a short lifetime with complex fabrication processes and expensive costs, which would largely limit the application scene to some extent. Here, we developed a state-of-the-art flexible and integrated sensor patch with screen-printing technology for in-situ and real-time monitoring of electrolyte balance and skin state. The screen-printed sensor patch was easily fabricated, highly reproducible, disposable and relatively stable, which was extremely for sweat sensors with low cost. The state of art sensors on the patch of Na, pH, skin impedance and temperature all showed excellent performance with high linearity (coefficient of determinations (R) are 0.998, 0.994, 0.998 and 0.997, respectively). Besides, the detection ranges of Na and pH sensors are wide enough for sweat analysis of 10-100 mM and 2-8, respectively. The proposed device provides a new strategy for real-time sweat analysis, preventing dehydration and skin state monitoring during exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2022.114985DOI Listing

Publication Analysis

Top Keywords

sensor patch
8
skin state
8
sweat analysis
8
sweat
5
flexible printable
4
printable integrated
4
integrated biosensors
4
monitoring
4
biosensors monitoring
4
monitoring sweat
4

Similar Publications

Hypertension constitutes a significant risk factor for the development of many coronary artery diseases. In recent years, the advancement of technology and artificial intelligence has led to significant research and breakthroughs in wearable devices that can monitor blood pressure (BP). These devices offer continuous, real-time BP readings, facilitating the early detection and prevention of hypertension.

View Article and Find Full Text PDF

This paper presents a novel adaptive fault-tolerant control (AFTC) framework for systems with piezoelectric sensor patches, specifically targeting sensor faults and external disturbances. The proposed method ensures robust control of cantilever thick plates by integrating adaptive estimation to simultaneously handle sensor faults and system uncertainties, maintaining stability despite issues like drift, bias, loss of accuracy, and effectiveness. Unlike traditional approaches that address sensor faults individually, our method provides a comprehensive solution backed by Lyapunov-based stability analysis, demonstrating uniform ultimate boundedness under various fault conditions.

View Article and Find Full Text PDF

Lack of timely prognosis of cardiovascular condition (CVC) is resulting in increased mortality across the globe. Currently, available techniques are confined to medical facilities and need the intervention of specialists. Frequently, this impedes timely treatment, driven by socioeconomic factors.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.
View Article and Find Full Text PDF
Article Synopsis
  • Smart hydrogel sensors can respond to stimuli like pH and temperature, with potential uses in biomedical, environmental, and wearable tech.
  • Developing wearable hydrogels that respond to body temperature, adhere well, and are transparent has been challenging.
  • The newly created thermo-responsive hydrogel changes properties based on temperature, is made using 3D printing, and can detect temperature and strain, making it ideal for smart medical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!