A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing Automated Computer Algorithms to Phenotype Periodontal Disease Diagnoses in Electronic Dental Records. | LitMetric

Developing Automated Computer Algorithms to Phenotype Periodontal Disease Diagnoses in Electronic Dental Records.

Methods Inf Med

Health Informatics, Department of Health Services Administrations and Policy, Temple University College of Public Health, Philadelphia, Pennsylvania, United States.

Published: December 2022

Objective: Our objective was to phenotype periodontal disease (PD) diagnoses from three different sections (diagnosis codes, clinical notes, and periodontal charting) of the electronic dental records (EDR) by developing two automated computer algorithms.

Methods: We conducted a retrospective study using EDR data of patients ( = 27,138) who received care at Temple University Maurice H. Kornberg School of Dentistry from January 1, 2017 to August 31, 2021. We determined the completeness of patient demographics, periodontal charting, and PD diagnoses information in the EDR. Next, we developed two automated computer algorithms to automatically diagnose patients' PD statuses from clinical notes and periodontal charting data. Last, we phenotyped PD diagnoses using automated computer algorithms and reported the improved completeness of diagnosis.

Results: The completeness of PD diagnosis from the EDR was as follows: periodontal diagnosis codes 36% ( = 9,834), diagnoses in clinical notes 18% ( = 4,867), and charting information 80% ( = 21,710). After phenotyping, the completeness of PD diagnoses improved to 100%. Eleven percent of patients had healthy periodontium, 43% were with gingivitis, 3% with stage I, 36% with stage II, and 7% with stage III/IV periodontitis.

Conclusions: We successfully developed, tested, and deployed two automated algorithms on big EDR datasets to improve the completeness of PD diagnoses. After phenotyping, EDR provided 100% completeness of PD diagnoses of 27,138 unique patients for research purposes. This approach is recommended for use in other large databases for the evaluation of their EDR data quality and for phenotyping PD diagnoses and other relevant variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788909PMC
http://dx.doi.org/10.1055/s-0042-1757880DOI Listing

Publication Analysis

Top Keywords

automated computer
16
computer algorithms
12
clinical notes
12
periodontal charting
12
completeness diagnoses
12
diagnoses
9
developing automated
8
phenotype periodontal
8
periodontal disease
8
disease diagnoses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!