The flexibility of locomotor movements requires an accurate control of their start, duration, and speed. How brainstem circuits encode and convey these locomotor parameters remains unclear. Here, we have combined in vivo calcium imaging, electrophysiology, anatomy, and behavior in adult zebrafish to address these questions. We reveal that the detailed parameters of locomotor movements are encoded by two molecularly, topographically, and functionally segregated glutamatergic neuron subpopulations within the nucleus of the medial longitudinal fasciculus. The start, duration, and changes of locomotion speed are encoded by vGlut2 neurons, whereas vGlut1 neurons encode sudden changes to high speed/high amplitude movements. Ablation of vGlut2 neurons compromised slow-explorative swimming, whereas vGlut1 neuron ablation impaired fast swimming. Our results provide mechanistic insights into how separate brainstem subpopulations implement flexible locomotor commands. These two brainstem command subpopulations are suitably organized to integrate environmental cues and hence generate flexible swimming movements to match the animal's behavioral needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2022.10.034DOI Listing

Publication Analysis

Top Keywords

brainstem circuits
8
adult zebrafish
8
locomotor movements
8
start duration
8
vglut2 neurons
8
brainstem
4
circuits encoding
4
encoding start
4
start speed
4
speed duration
4

Similar Publications

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Ajou University School of Medicine, Korea, Suwon, Korea, Republic of (South).

Background: The extent of neurofibrillary changes, one of the pathological hallmarks of AD, correlates with the severity of AD in dementia. The brainstem is known to be the site of neurofibrillary changes in the early stages of Alzhimer's disease. The neurotransmitter system in the brainstem processes information from subcortical and cortical circuits affect to various cognitive and behavioral responses in the cerebral cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!