Background: Qizhu Tangshen Formula (QZTS) has been shown therapeutic effects on diabetic kidney disease (DKD). However, to date, the pharmacological mechanisms remain vague.

Methods: To explore the underlying mechanisms of QZTS in treating DKD using network pharmacology, machine learning, molecular docking and experimental assessment.

Results: First, we found that QZTS improved glycolipid metabolism disorder, decreased proteinuria and alleviated kidney tissue injury in DKD model KKAy mice. Then, by integrating multiple databases, a total of 96 targets of 74 active compounds in QZTS and 759 DKD-related genes were acquired. Next, we identified 13 hub targets of QZTS in DKD by three rank algorithms, including functional similarity, topological similarity and shortest path. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that the pathways mainly centered on the processes of glycolipid metabolism disorder, inflammation and angiogenesis. Among them, VEGF signaling pathway was significantly enriched. Molecular docking showed that key active compounds of QZTS all had relatively good binding affinity with predicted hub targets. Finally, animal experiments found that QZTS significantly inhibited the secretion of plasma VEGF and downregulated the protein and mRNA expression levels of AKT, p38MAPK and VEGFR2.

Conclusion: Our results indicated that QZTS treated DKD via multiple targets and pathways and the VEGF signaling pathway may be highly involved in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154525DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
qizhu tangshen
8
tangshen formula
8
diabetic kidney
8
kidney disease
8
network pharmacology
8
pharmacology machine
8
machine learning
8
learning molecular
8
docking experimental
8

Similar Publications

Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects.

View Article and Find Full Text PDF

The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.

View Article and Find Full Text PDF

Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.

Phytochem Anal

December 2024

Institute of Oncology, the First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).

Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database.

View Article and Find Full Text PDF

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!