A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Adhesive and Conductive Dual-Network Polyacrylamide Hydrogels Reinforced by Aminated Lignin, Dopamine, and Biomass Carbon Aerogel for Ultrasensitive Pressure Sensor. | LitMetric

Self-Adhesive and Conductive Dual-Network Polyacrylamide Hydrogels Reinforced by Aminated Lignin, Dopamine, and Biomass Carbon Aerogel for Ultrasensitive Pressure Sensor.

ACS Appl Mater Interfaces

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China.

Published: December 2022

AI Article Synopsis

  • Conductive hydrogels are gaining attention for applications in soft robotics and electronic skin, but face challenges with mechanical properties, adhesion, and conductivity.
  • A new highly elastic conductive hydrogel was developed using aminated lignin, polydopamine, polyacrylamide, and biomass carbon aerogel, resulting in improved mechanical performance, strong adhesion, and excellent electrical properties.
  • This hydrogel-based pressure sensor demonstrates fast response times, a wide pressure range, exceptional sensitivity, durability through numerous cycles, and good biocompatibility, indicating its potential use in human/machine interaction and wearable technology.

Article Abstract

Conductive hydrogels have attracted extensive interest owing to its potential in soft robotics, electronic skin, and human monitoring. However, insufficient mechanical properties, lower adhesivity, and unsatisfactory conductivity seriously hinder potential applications in this emerging field. Herein, a highly elastic conductive hydrogel with a combination of favorable mechanical properties, self-adhesiveness, and excellent electrical performance was achieved by the synergistic effect of aminated lignin (AL), polydopamine (PDA), polyacrylamide (PAM) chains, and biomass carbon aerogel (C-SPF). In detail, AL was applied to induce slow oxidative polymerization of DA for preparing the sticky hydrogel containing PDA. Then, C-SPF carbon aerogel was used as a matrix to construct a dual-network structured composite hydrogel by combining with the hydrogels derived from PDA, AL, and PAM. The as-prepared conductive hydrogel displayed excellent mechanical performance, strong adhesive strength, and repeatable adhesivity. The prepared hydrogel-based pressure sensor possessed fast response (0.6 s loading and 0.8 s unloading stress time), high response (maximum RCR = 1.8 × 10), wide working pressure range (from 0 to 240.0 kPa), and excellent durability (stable 500 compression cycles with 30% deformation). In addition, the prepared sensor also displayed ultrahigh sensitivity (170 kPa), which was near 4 orders of magnitude higher than the conventional lignin-modified PAM hydrogels. The multiple interactions between hydrogel components and the mechanical properties of hydrogel were also verified by molecular dynamics investigation. Moreover, the excellent cytocompatibility and antibacterial activity of this composite hydrogel ensured high potential in various applications such as human/machine interaction, artificial intelligence, personal healthcare, and wearable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12914DOI Listing

Publication Analysis

Top Keywords

carbon aerogel
12
mechanical properties
12
aminated lignin
8
biomass carbon
8
pressure sensor
8
potential applications
8
conductive hydrogel
8
composite hydrogel
8
hydrogel
7
self-adhesive conductive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: