A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unravelling the Complex LiOH-Based Cathode Chemistry in Lithium-Oxygen Batteries. | LitMetric

The LiOH-based cathode chemistry has demonstrated potential for high-energy Li-O batteries. However, the understanding of such complex chemistry remains incomplete. Herein, we use the combined experimental methods with ab initio calculations to study LiOH chemistry. We provide a unified reaction mechanism for LiOH formation during discharge via net 4 e oxygen reduction, in which Li O acts as intermediate in low water-content electrolyte but LiHO as intermediate in high water-content electrolyte. Besides, LiOH decomposes via 1 e oxidation during charge, generating surface-reactive hydroxyl species that degrade organic electrolytes and generate protons. These protons lead to early removal of LiOH, followed by a new high-potential charge plateau (1 e water oxidation). At following cycles, these accumulated protons lead to a new high-potential discharge plateau, corresponding to water formation. Our findings shed light on understanding of 4 e cathode chemistries in metal-air batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107133PMC
http://dx.doi.org/10.1002/anie.202212942DOI Listing

Publication Analysis

Top Keywords

lioh-based cathode
8
cathode chemistry
8
water-content electrolyte
8
protons lead
8
unravelling complex
4
complex lioh-based
4
chemistry
4
chemistry lithium-oxygen
4
lithium-oxygen batteries
4
batteries lioh-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!