The objective of the study was to identify extracellular vesicle (EV) microRNAs (miRNAs) that play important roles in knee osteoarthritis (OA). Models of knee OA were surgically induced in nine male Sprague-Dawley rats. Tissue samples were collected at 0 weeks (Control), 6 weeks (6 weeks), and 12 weeks (12 weeks). The EVs were isolated and analyzed for size. Various biomarkers, including recombinant tetraspanin 30 cluster of differentiation (CD)63 and CD9 were detected. An Agilent array was used to screen for differentially expressed (DE) miRNAs. The levels of DE miRNAs and their target mRNAs were evaluated by quantitative reverse transcription-polymerase chain reaction and western blotting. The viability, proliferation, and apoptosis of lipopolysaccharide (LPS)-induced human synovial cells (HSCs) were examined by using Cell Counting Kit-8, EdU (5-ethynyl-2'-deoxyuridine), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays, respectively. The OA model rats had significantly increased levels of inflammatory activity, damaged cells, and rough articular cartilage when compared with rats in the control group. The EVs from the model rats appeared as round vesicle-like structures with a mean diameter of ∼145 nm. Five miRNAs that showed gradual increases in the model rats were selected for further analysis; those miRNAs included miR-127-3p, miR-132-3p, miR-141-3p, miR-345-5p, and miR-382-5p. miR-382-5p was found to reduce the viability and proliferation and promote the apoptosis of LPS-induced HSCs. Moreover, phosphatase and tensin homolog deleted on chromosome 10 () was negatively regulated by miR-382-5p. Our findings revealed that EVs produced by the OA rats contained miR-382-5p, which might reduce cell viability and proliferation, and promote cell apoptosis by targeting .

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2021.0726DOI Listing

Publication Analysis

Top Keywords

viability proliferation
16
weeks weeks
12
model rats
12
cell viability
8
cell apoptosis
8
apoptosis targeting
8
mir-382-5p reduce
8
proliferation promote
8
rats
6
cell
5

Similar Publications

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Background: Disorders of lipid metabolism are critical factors in the progression of chronic lymphocytic leukemia (CLL). However, the characteristics of lipid metabolism and related regulatory mechanisms of CLL remain unclear.

Methods: Hence, we identified altered metabolites and aberrant lipid metabolism pathways in patients with CLL by ultra-high-performance liquid chromatography-mass spectrometry-based non-targeted lipidomics.

View Article and Find Full Text PDF

Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.

View Article and Find Full Text PDF

RFC3 Knockdown Decreases Cervical Cancer Cell Proliferation, Migration and Invasion.

Cancer Genomics Proteomics

December 2024

Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea

Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.

View Article and Find Full Text PDF

Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!