Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2784-6_4DOI Listing

Publication Analysis

Top Keywords

protein ubiquitylation
8
signaling proteins
8
ubiquitylation
5
vitro assay
4
assay recapitulate
4
recapitulate hormone-triggered
4
hormone-triggered scf-mediated
4
protein
4
scf-mediated protein
4
ubiquitylation signaling
4

Similar Publications

Post-translational modifications and bronchopulmonary dysplasia.

Front Pediatr

January 2025

Department of Neonatology, Children's Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.

Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes.

View Article and Find Full Text PDF

The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined.

View Article and Find Full Text PDF

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

Background: Renal tubular injury (RTI) is one of the key characteristics of diabetic nephropathy (DN). Penehyclidine hydrochloride (PHC) was an anticholinergic drug with renoprotective effects, but its specific mechanism in the treatment of DN was still unclear.

Methods: We treated different diabetic mouse models and high glucose-induced RTI models by PHC.

View Article and Find Full Text PDF

Degrading Mutant IDH1 Employing a PROTAC-Based Approach Impairs STAT3 Activation.

Arch Biochem Biophys

January 2025

Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!