Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728258PMC
http://dx.doi.org/10.1007/s00068-022-02098-4DOI Listing

Publication Analysis

Top Keywords

correction intraoperative
4
intraoperative fluoroscopic
4
fluoroscopic protocol
4
protocol avoid
4
avoid rotational
4
rotational malalignment
4
malalignment nailing
4
nailing tibia
4
tibia shaft
4
shaft fractures
4

Similar Publications

The aim of this study was to compare the technique of navigation-assisted biopsy based on fused PET and MRI datasets to CT-guided biopsies in terms of the duration of the procedure, radiation dose, complication rate, and accuracy of the biopsy, particularly in anatomically complex regions. Between 2019 and 2022, retrospectively collected data included all navigated biopsies and CT-guided biopsies of suspected primary bone tumors or solitary metastases. Navigation was based on preoperative CT, PET-CT/-MRI, and MRI datasets, and tumor biopsies were performed using intraoperative 3D imaging combined with a navigation system.

View Article and Find Full Text PDF

Background: Correction of adult spinal deformity (ASD) through minimally invasive techniques is a challenging endeavor and has typically been reserved for experienced surgeons. This publication aims to be the first high-resolution technique guide to demonstrate a reproducible technique for ASD correction utilizing circumferential minimally invasive surgery (cMIS) without an osteotomy. The Segmental Interbody, Muscle-Preserving, Ligamentotaxis-Enabled Reduction (SIMPLER) technique is a novel ligamentotaxis-based scoliosis surgery that represents a paradigm shift from traditional osteotomies toward patient-specific correction.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the risk factors for loss of intraoperative correction, as measured by lumbar lordosis (LL), with an emphasis on rod characteristics.

Methods: A retrospective study identified patients at least 50 years of age who underwent instrumented fusion with an upper instrumented vertebrae (UIV) in the upper thoracic spine (T1-T6) or thoracolumbar junction (T10-L2) to the pelvis. Inclusion criteria included intraoperative x-rays that allowed for LL measurement, postop standing x-rays, and a minimum follow up of 24 months with the original rods still in place.

View Article and Find Full Text PDF

Background: Vertebral body tethering (VBT) is a nonfusion surgical treatment for scoliosis. Recent data have shown that intraoperative correction is critical for successful curve correction over time. This study aims to evaluate the relationship between preoperative, intraoperative, and postoperative correction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!