Introduction: Radiofrequency (RF) ablation of the left atrium of the heart is increasingly used to treat atrial fibrillation (AF). Unfortunately, inadvertent thermal injury to the esophagus can occur during this procedure, potentially creating an atrioesophageal fistula (AEF) which is 80% fatal. The ensoETM (Attune Medical, Chicago, IL), is an esophageal cooling device that has been shown to reduce thermal injury to the esophagus during RF ablation.

Areas Covered: This review summarizes growing evidence related to active esophageal cooling during RF ablation for the treatment of AF. The review presents data demonstrating improved outcomes related to patient safety and procedural efficiency and suggests directions for future research.

Expert Opinion: The use of active esophageal cooling during RF ablation reduces esophageal injury, reduces or eliminates fluoroscopy requirements, reduces procedure duration and post-operative pain, and increases long-term freedom from arrhythmia. These effects in turn increase patient same-day discharge rates, decrease operator cognitive load, and reduce cost. These findings are likely to further accelerate the adoption of active esophageal cooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839561PMC
http://dx.doi.org/10.1080/17434440.2022.2150930DOI Listing

Publication Analysis

Top Keywords

esophageal cooling
20
active esophageal
16
radiofrequency ablation
8
ablation left
8
left atrium
8
thermal injury
8
injury esophagus
8
cooling ablation
8
cooling
5
esophageal
5

Similar Publications

Introduction: Proactive esophageal cooling reduces injury during radiofrequency (RF) ablation of the left atrium (LA) for the treatment of atrial fibrillation (AF). New catheters are capable of higher wattage settings up to 90 W (very high-power short duration, vHPSD) for 4 s. Varying power and duration, however, does not eliminate the risk of thermal injury.

View Article and Find Full Text PDF

Maintenance of normothermia in the out-of-hospital setting: A pilot comparative crossover study of a foil blanket versus self-warming blanket.

Australas Emerg Care

December 2024

Ambulance Victoria, Doncaster, Victoria, Australia; Monash University, Department of Paramedicine, Frankston, Victoria, Australia; Monash University, School of Public Health and Preventive Medicine, Melbourne, Victoria, Australia. Electronic address:

Introduction: Hypothermia can increase mortality in certain patients. Paramedics apply cotton and foil "space" blankets for warming, yet their effectiveness remains uncertain. This pilot study aimed to evaluate combining cotton blankets with a self-warming blanket versus a combination of cotton blankets and a foil blanket in an out-of-hospital simulation.

View Article and Find Full Text PDF
Article Synopsis
  • Primary atopic disorders (PAD) are rare genetic conditions caused by specific gene variants that affect skin and immune function, making diagnosis challenging among common allergic disease cases.
  • Identifying PAD requires recognizing clinical red flags like family history and unusual infections, as conventional lab tests are inadequate for definitive diagnosis.
  • Whole-genome sequencing (WGS) enhances diagnostic efficiency and accuracy, but requires careful interpretation and collaboration among specialists to effectively manage PAD cases.
View Article and Find Full Text PDF

Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases.

View Article and Find Full Text PDF

Background: Brain injury is one of the most serious complications after cardiac arrest (CA). To prevent this phenomenon, rapid cooling with total liquid ventilation (TLV) has been proposed in small animal models of CA (rabbits and piglets). Here, we aimed to determine whether hypothermic TLV can also offer neuroprotection and mitigate cerebral inflammatory response in large animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!