A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Delaying drought-driven leaf cell damage may be the key trait of invasive trees ensuring their success in the Mediterranean basin. | LitMetric

Delaying drought-driven leaf cell damage may be the key trait of invasive trees ensuring their success in the Mediterranean basin.

Tree Physiol

Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, Messina 98166, Italy.

Published: March 2023

Invasive alien species (IAS) threaten the biodiversity richness of the Mediterranean basin, a drought-prone region. However, our knowledge on the adaptive strategies of IAS for facing Mediterranean drought summers is still incomplete. The aim of the present study is to compare the water relations and the critical relative water content (RWC) values leading to loss of cell rehydration capacity of two Mediterranean basin IAS (i.e., Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L.) versus two co-occurring native species (i.e., Fraxinus ornus L. and Quercus pubescens Willd.). Study IAS showed higher values of water potential at turgor loss point and osmotic potential at full turgor, lower values of modulus of elasticity and leaf mass area but higher photosynthesis rate, even during the summer, with respect to the Mediterranean native species. These findings supported the hypothesis that IAS are characterized by a resource acquisitive strategy coupled with a safety-efficiency trade-off, compared with Mediterranean native species. However, similar leaf RWC thresholds leading to loss of cell rehydration capacity were recorded in the two groups of species. Moreover, IAS showed higher saturated water content and capacitance values compared with the co-occurring species. Overall, our results suggest that the success of Mediterranean IAS is driven by their ability to delay dehydration damage of mesophyll cells during Mediterranean summer drought, thereby supporting their distinctive high carbon assimilation rate.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpac134DOI Listing

Publication Analysis

Top Keywords

mediterranean basin
12
native species
12
mediterranean
8
success mediterranean
8
species ias
8
water content
8
leading loss
8
loss cell
8
cell rehydration
8
rehydration capacity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!