Study Question: Is interleukin-10 (IL-10) anti-fibrotic in endometriosis?

Summary Answer: IL-10 is not anti-fibrotic but pro-fibrotic in endometriosis, because IL-10 treatment of endometriotic stromal cells in vitro promotes myofibroblast proliferation and collagen type I protein expression.

What Is Known Already: We previously showed that persistent activation of signal transducer and activator of transcription 3 (STAT3) via IL-6 trans-signaling promotes fibrosis of endometriosis. Studies showed marked anti-fibrotic effects of IL-10 via the STAT3 signaling pathway, which is generally considered to be anti-inflammatory, in various organs.

Study Design, Size, Duration: Endometrial and/or endometriotic samples of 54 patients who had histological evidence of deep endometriosis, and endometrial samples from 30 healthy fertile women were analyzed.

Participants/materials, Setting, Methods: The effects of IL-10/STAT3 signaling as well as inhibition of STAT3 activation by knockdown of STAT3 gene on the pro-fibrotic phenotype in endometrial and endometriotic stromal cells in vitro were investigated. Then, the effects of various time points of IL-10 treatment in combination with transforming growth factor (TGF)-β1 and/or IL-6/soluble IL-6 receptor (sIL-6R) on the profibrotic phenotype of endometrial and endometriotic stromal cells were investigated.

Main Results And The Role Of Chance: IL-10 induced pro-fibrotic phenotype (cell proliferation, collagen type I synthesis, α-smooth muscle actin positive stress fibers and collagen gel contraction) of endometriotic stromal cells. Knockdown of STAT3 gene decreased the IL-10 induced pro-fibrotic phenotype of endometriotic stromal cells. In contrast, IL-10 had no significant effects on pro-fibrotic phenotype of endometrial stromal cells of healthy women. Sequential IL-10 treatment with or without TGF-β1 and/or IL-6/sIL-6R induced persistent activation of STAT3 and significantly increased proliferation of myofibroblasts (cells with α-smooth muscle actin positive stress fibers) and protein expression of collagen type I in endometriotic stromal cells. TGF-β1 and/or IL-6/sIL6RIL-6/sIL6R treatment significantly increased tissue inhibitor of metalloproteinase 1 (TIMP1) protein expression, whereas IL-10 had no significant effects. Knockdown of STAT3 gene significantly decreased the TGF-β1 and/or IL-6/sIL6R induced TIMP1 protein expression. In contrast, pre-treatment with IL-10 before TGF-β1 and/or IL-6/sIL-6R treatment and sequential IL-10 treatment with or without TGF-β1 and/or IL-6/sIL-6R significantly decreased proliferation of fibroblasts (cells without α-smooth muscle actin positive stress fibers) and collagen type I protein expression in endometrial stromal cells of healthy women.

Large Scale Data: N/A.

Limitations, Reasons For Caution: Given the large number of complex interactions and signaling pathways of pro- and anti-inflammatory mediators that are involved in the pathophysiology of endometriosis, the present study investigated only a very small portion of the whole. Further in vivo studies are required to validate the present findings.

Wider Implications Of The Findings: Inflammatory mediators in the pathophysiology of endometriosis have been extensively investigated as potential therapeutic targets. However, the present study showed that anti-inflammatory signals of IL-10 and IL-6 through persistent STAT3 activation may promote endometriosis fibrosis. Therapeutic strategies, such as suppression of 'inflammation', might dysregulate the cross-regulation of 'pro- and anti-inflammatory mediators', leading to detrimental effects in patients with endometriosis, such as fibrosis. To develop new, but not deleterious, therapeutic strategies, studies are required to investigate whether, how and what 'anti-inflammatory mediators' along with pro-inflammatory mediators are involved in individual patients with endometriosis.

Study Funding/competing Interest(s): This study was supported in part by KARL STORZ SE & Co. KG (Tuttlingen, Germany). The authors have no conflict of interest to disclose.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/deac248DOI Listing

Publication Analysis

Top Keywords

stromal cells
36
endometriotic stromal
28
tgf-β1 and/or
24
il-10 treatment
20
collagen type
20
protein expression
20
pro-fibrotic phenotype
16
il-10
15
il-10 anti-fibrotic
12
cells vitro
12

Similar Publications

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways.

View Article and Find Full Text PDF

Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!