Piwi proteins and Piwi-interacting RNAs (piRNAs) are best known for their roles in suppressing transposons and promoting fertility. Yet piRNA biogenesis and its mechanisms of action differ widely between distantly related species. To better understand the evolution of piRNAs, we characterized the piRNA pathway in , a sibling species of the model organism . Our analyses define 25,883 piRNA producing-loci in . piRNA sequences in are extremely divergent from their counterparts in , yet both species adopt similar genomic organization that drive piRNA expression. By examining production of Piwi-mediated secondary small RNAs, we identified a set of protein-coding genes that are evolutionarily conserved piRNA targets. In contrast to , small RNAs targeting ribosomal RNAs or histone transcripts are not hyper-accumulated in Piwi mutants. Instead, we found that transcripts with few introns are prone to small RNA overamplification. Together our work highlights evolutionary conservation and divergence of the nematode piRNA pathway and provides insights into its role in endogenous gene regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683057 | PMC |
http://dx.doi.org/10.1080/15476286.2022.2149170 | DOI Listing |
Sci Data
January 2025
Gakushuin University, Faculty of Science, Department of Life Science, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
Trilocha varians is a member of the bombycid moths. Since T. varians has a considerably shorter generation period than the prevailing model species, Bombyx mori, this species would be a novel model insect in Lepidoptera.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Biology, James Madison University, Harrisonburg, VA, United States.
Injuries associated with contemporary life, such as automobile crashes and sports injuries, can lead to large numbers of traumatic neuromuscular injuries that are intimately associated with bone fractures. Regulatory and non-coding RNAs play essential roles in multiple cellular processes, including osteogenic differentiation and bone healing. In this review, we discuss the most recent advances in our understanding of the regulatory and non-coding RNA biology of osteogenic differentiation in stem, stromal and progenitor cells.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.
Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.
Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.
Cell Death Dis
January 2025
Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that play a crucial role in gene regulation and immune defense. This study investigates their function in Penaeus vannamei shrimp during White Spot Syndrome Virus (WSSV) infection. Analysis of small RNA libraries from WSSV-infected shrimp hemocytes identified 82,788 piRNA homologs, with 138 showing altered expression during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!