Objective: The present study aimed to investigate the inhibitory role of second mitochondria determined activator of caspases mimetic on inhibitor of apoptosis proteins (IAPs) and regulation of caspases in nonsmall cell lung cancer cell line.

Materials And Methods: Dimethyl sulfoxide and 3-(4, 5-dimethyl thizol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay was done to determine the IC of BV6 using NCI-H23 cell line. The levels of mRNA of X-linked IAP (XIAP), cellular IAP (cIAP-1), cIAP-2, caspase-6, and caspase-7 in H23 cell line were evaluated by a quantitative real-time polymerase chain reaction, while their protein expressions were tested using western blotting.

Results: Two doses of BV6 dependently downregulated the expression of mRNA of XIAP (P = 0.002, P= 0.0003 vs. untreated), cIAP-1 (P = 0.05, P = 0.005 vs. untreated), and cIAP-2 (P = 0.001, P = 0.0002 vs. untreated), respectively, while the compound upregulated the mRNA expression of caspase-6 (P = 0.001, P < 0.0001 vs. untreated) and caspase-7 (P = 0.001, P = 0.0004 vs. untreated), respectively. Dose dependent of BV6 treatment significantly decreased the protein level of XIAP (P = 0.003, P = 0.007 vs. untreated), cIAP-1 (P = 0.02, P = 0.01 vs. untreated), and cIAP-2 (P = 0.008,P = 0.008 vs. untreated), respectively. However, the compound increased the protein level of caspase-6 and caspase-7 when compared to untreated control (P = 0.006,P = 0.001) and (P = 0.01, P = 0.001), respectively.

Conclusions: The result showed that BV6 treatment reduced the level of mRNA of XIAP, cIAP-1, and cIAP-2 and increased the gene expression of caspase-6 and caspase-7 in NCI-H23 cell line. Therefore, the study revealed that BV6 could be used in future as additional therapeutics in lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.4103/jcrt.JCRT_1281_20DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
ciap-1 ciap-2
12
caspase-6 caspase-7
12
untreated
9
xiap ciap-1
8
nci-h23 cell
8
mrna xiap
8
untreated ciap-1
8
untreated ciap-2
8
untreated compound
8

Similar Publications

TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate.

Genome Med

January 2025

Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.

Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).

View Article and Find Full Text PDF

Background: Whether the intake of whole grain foods can protect against lung cancer is a long-standing question of considerable public health import, but the epidemiologic evidence has been limited. Therefore we aim to investigate the relationship between whole grain food consumption and lung cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort.

Methods: Diet was assessed with a self-administered Diet History Questionnaire (DHQ) at baseline.

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!