The demand for new renewable energy sources, improved energy storage and exhaust-free transportation requires the use of large quantities of rare earth (REE) and late transition (LTM, group 8-12) elements. In order to achieve sustainability in their use, an efficient green recycling technology is required. Here, an approach, a synthetic route and an evaluation of the designed bio-based material are reported. Cotton-derived nano cellulose particles were functionalized with a polyamino ligand, tris(2-aminoethyl) amine (TAEA), achieving ligand content of up to . 0.8 mmol g. The morphology and structure of the produced adsorbent were revealed by PXRD, SEM-EDS, AFM and FTIR techniques. The adsorption capacity and kinetics of REE and LTM were investigated by conductometric photometric titrations, revealing quick uptake, high adsorption capacity and pronounced selectivity for LTM compared to REE. Molecular insights into the mode of action of the adsorbent were obtained the investigation of the molecular structure of the Ni(II)-TAEA complex by an X-ray single crystal study. The bio-based adsorbent nanomaterial demonstrated in this work opens up a perspective for tailoring specific adsorbents in the sequestration of REE and LTM for their sustainable recycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03150g | DOI Listing |
Int J Biol Macromol
January 2025
Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
Developing efficient adsorbent is imperative for the utilization of uranium resources in seawater. Marine microorganisms and bacteria play an important role in the process of adsorption of uranium. In this work, a completely bio-based antimicrobial aerogel (quaternary cellulose/chitosan aerogel-QCNF/CS) was prepared by cross-linking quaternary cellulose nanofibers (QCNF) and chitosan (CS) via citric acid (CA).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, Punjab, India. Electronic address:
Carbohydr Polym
March 2025
Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:
Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).
View Article and Find Full Text PDFHeliyon
October 2024
Department of Chemistry, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania.
Carbohydr Polym
February 2025
BioPrEn Group (RNM940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, Universidad de Córdoba, 14014 Cordoba, Spain. Electronic address:
This study confirms the efficacy of a unique combined pretreatment-functionalization protocol based on the use of deep eutectic solvent (DES) to obtain sulfated lignocellulose and cellulose nanofibers (SLNF or SNF) hydrogels, which have been successfully shaped as sponge-based adsorbents and fruitfully assessed for the removal of heavy metals from water. A comprehensive characterization study was conducted, demonstrating an excellent degree of sulfation (0.62) in DES-treated wheat straw-derived nanofibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!